ESRF	Experiment title: X-ray absorption magnetic circular dichroism study of the magnetic properties of the newly discovered ferromagnet UBeGe	Experiment number: HC-2091
Beamline:	Date of experiment:	Date of report:
ID12	from: 09/09/2015 to: 14/09/2015	14/02/2017
Shifts:	Local contact(s):	Received at ESRF:
9	WILHELM Fabrice	
Names and affiliations of applicants (* indicates experimentalists):		
Yuki Utsumi*, Stefano Agrestini*, Roman Gumeniuk*		
Max-Planck Institut CPfS, Nöthnitzer Str. 40, 01187 Dresden - Germany		

Report:

Uranium compounds are known to exhibit a wide range of physical properties including ferromagnetism, Pauli paramagnetism, heavy fermion behaviour and unconventional superconductivity. Particularly, the coexistence of superconductivity with ferromagnetism in uranium compounds [1, 2] has attracted great interest in the scientific community. Recently the new compound UBeGe with the ZrBeSi type of crystal structure was discovered in our group [3]. Magnetization study performed on polycrystalline samples revealed that UBeGe is ferromagnetic with Curie temperature $T_C = 157$ K, which is one of the highest T_C among known uranium compounds not containing ferromagnetic elements. The magnetic susceptibility obeys a Curie-Weiss law from 400 K down to 200 K. A Curie-Weiss fitting above 200 K indicates the large effective magnetic moment of $\mu_{eff} = 3.2 \ \mu_B$. The experimentally observed saturation moment is 2.4 μ_B . Band structure calculations have great difficulties to explain this number: LSDA+U with U = 0 eV finds $M_{spin} = 1.8 \ \mu_B$ and $M_{orb} = -2.4 \ \mu_B$, with U = 2 eV: $M_{spin} = 1.6 \ \mu_B$ and $M_{orb} = -1.9 \ \mu_B$ and with U = 4 eV: $M_{spin} = 2.1 \ \mu_B$ and $M_{orb} = -1.8 \ \mu_B$. The calculated values for M_{spin} and M_{orb} thus vary wildly depending on the choice of U.

In the proposal we planned a X-ray magnetic circular dichroism (XMCD) study at the U $M_{4,5}$ edges with the goal of a basic understanding of the electronic and local magnetic structure of Uranium in UBeGe. XMCD is a powerful method to obtain the orbital and spin magnetic moments of U 5f shell since $M_{4,5}$ edges involve the transition between 3d and 5f states. A large number of XMCD measurements at $M_{4,5}$ edge were performed on ferromagnetic uranium compounds demonstrating the capacity of this technique to provide reliable L_z and S_z values [4-6].

We have carried out x-ray magnetic circular dichroism (XMCD) experiments at the U- $M_{4,5}$ edge on polycrystalline sample of UBeGe at 2 K under a magnetic field of 3 T. The measured XAS and XMCD spectra are shown in Fig. 1. The XMCD signal at the M_4 edge possesses a single negative lobe as well as other reported uranium compounds [7], whereas a positive and a negative lobes are observed at the M_5 edge. Such double-lobe structure was also observed for UGe₁₃, UPt₃ and UPd₂Al₃ [7, 8] indicating that the hybridization, Coulomb and exchange, and crystal-field interactions cannot longer be treated as a perturbation with respect to the 5f spin-orbit interaction [7]. In Fig. 2 we report the hysteresis of the XMCD signal of the U M_4 edge measured at 2 K.

Information about the electronic configuration of the Uranium can be obtained by the branching ratio defined as $I_{5/2}/(I_{5/2} + I_{3/2}) = 0.674$ where $I_{5/2}$ and $I_{3/2}$ are the integrated areas under the white lines of the $3d_{5/2}$ (M_5 edge) and $3d_{3/2}$ (M_4 edge) peaks, respectively. The experimental value of the branching ratio is close to the value of 0.67 expected for a 5f² configuration of Uranium (corresponding to an U⁴⁺ ion) [4].

Fig. 1. U-M₅ and M₄ XAS (red) and XMCD (blue) spectra of UBeGe measured at T = 2 K under an applied field of H = 3.0 T at the ID12 beamline of ESRF using circular polarized soft X-rays.

Fig. 2. Hysteresis of the XMCD signal of the U M_4 edge measured at 2 K.

By applying to our U-M_{4,5} spectra the following sum rules developed by Thole et al. and by Carra et al.

$$Sz + 3Tz = \frac{n_h^{5f}}{2} \frac{2 \int_{M5} \Delta \mu(E) dE - 3 \int_{M4} \Delta \mu(E) dE}{\int_{M5+M4} [\mu^+(E) + \mu^-(E)] dE} \qquad \qquad Lz = \frac{3n_h^{5f} \int_{M5+M4} \Delta \mu(E) dE}{\int_{M5+M4} [\mu^+(E) + \mu^-(E)] dE}$$

we obtain an orbital moment of $\langle Lz \rangle = -1.66 \ \mu_B$ and an effective spin moment $\langle Sz \rangle + 3 \langle Tz \rangle = 1.05 \ \mu_B$, where $\langle Tz \rangle$ is the magnetic dipole moment. We have considered $n_h=12$ according to a 5f² configuration.

A comparison of the experimental value of the orbital moment and with that obtained by LSDA+U calculations suggests the need to consider a large value of the Coulomb repulsion for the UBeGe in order to reproduce the experimental values.

References

- 1. S. S. Saxena et al., Nature 406 (2000) 587-592.D. Pesin and L. Balents, Nature Phys. 6, 376 (2010).
- 2. D. Aoki et al, Nature 413 (2001) 613-616.
- 3. R. Gumeniuk et al,. Unpublished, MPI CPfS.
- 4. M. Finazzi et al., Phys. Rev. B 55 (1997) 3010.
- 5. A. N. Yaresko et al., J. Phys.: Condens. Matter 17 (2005) 2443-2452.
- 6. P. Dalmas de Réotier et al., J. Alloys Comp. 271-273 (1998) 441-417.
- 7. P. Dalmas de Réotier et al., Phys. Rev. B 60 (1998) 10606.
- 8. A. Yaouanc, et al., Phsy. Rev. B 58 (1998) 8793.