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Report: 
The purpose of this proposal was to study melting curve of NH3 and H2O. The melting line of NH3 has been 
fewly investigated1 while melting curve of water was extensively studied2–14. The most recent publications 
highlight a significant disagreement on melting curve of water and ammonia at high temperature. One issue 
of studying melting curves is to reach high temperature and to measure them (above 1000K). To reach high 
temperatures (above 1000K) in  water and ammonia studies, indirect heating is commonly performed using 
an absorber heated with YAG laser except for Kimura. The inconvenience of the absorber heating is that it 
can react with the sample at high temperature and pressure. To  limit any chemical reaction, we used CO2 
laser heating to heat our compounds directly. 
 
Experimental methods : 
We prepared 3 samples of NH3 loaded cryogenically and 2 samples of H2O. Each sample have a gold ring 
and no pressure calibrant was used in order to prevent any chemical reaction. Pressure was measured with the 
EoS of gold. NH3 and H2O samples were heated directly using a CO2 laser. The CO2 laser set-up of EH2 
require a long alignement for each DAC (around 3-4h) but we have succeeded in aligning the five DACs. 
Temperatures were measured by optical pyrometry. The melting was measured by the appearance of a liquid 
diffuse signal. To obtain these liquid diffuse signals, we used Soller slits in order to reduce drastically the 
Compton scattering from diamond anvils whose are very important for low-Z elements15,16. 
 
Results : 



For NH3, we explored the P-T diagram between 5<P<40 GPa and 300<T<4000K. We succeeded to measure 
3 melting points up to 39 GPa (see Fig. 1). Above 39 GPa diamonds of the 2 DACs in temperature were 
damaged. One of the hypothesis is that, at this pressure and temperature, we were in the area of a superionic 
phase and that the fast protons diffusion can creates default in diamond and damage it. Currently, we are 
trying to find a way to reduce the damage of diamonds. 
For H2O, we explored the PT diagram between 27<P<62 GPa and 300<T<4500K. We clearly identified 4 
melting points up to 45 GPa (see Fig. 2). Above this pressure we could not see any liquid diffuse signal. The 
melting points did not correspond with the previous experiments reported7–11,13. During heating, one sharp 
peak appeared near the main bcc reflection. This peak was unexpected however Schwager et al.12 reported a 
new phase near this region. This peak disappeared when we returned to room temperature. Analysis is on-
going but we believe such results are not due to any artifacts or sample pollutions, because we take a lot of 
precautions to prevent any chemical reaction in our samples (no ruby, no absorber). A Raman spectroscopy 
will be planed to obtain vibrational information of this possible new phase. 
 
Conclusions : 
This run allowed us to explore the melting curve of ammonia up to 40 GPa around 2500K and for water 
up to 45 GPa at 1500K. For both compounds, the results are very promising. For ammonia we 
accumulated data sets which converge to a triple point very close to the last melting point. For water 
we observed a new compound at high temperature and moderate pressure. 

 
Figure 1 : Patterns of water at 45 GPa and different tempertures. Melting point is T = 1492 ± 100 K 

 



 
Figure 2 : Patterns of ammonia at 39 GPa and different tempertures. Melting point is T = 2447 ± 207 K 
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