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Report: 

Grain boundary sliding is one of the dominant deformation mechanisms of superplasticity and high 

temperature creep. Despite decades of experimental research, the mechanisms of grain boundary sliding still 

remain controversial. Conventional techniques such as SEM-EBSD in-situ experiments have shown grain 

neighbour switching geometry phenomena in 2D sections using surface marker grids. However, the surface 

behaviour does not necessarily reflect the bulk of the sample.  

In the ID11 beamline, we have carried out a novel experiment in which diffraction contrast tomography 

(DCT) is exploited to investigate grain boundary sliding behaviour in 3D in the bulk material. DCT scans can 

be reconstructed to 3D maps illustrating the evolution of the grain structure and orientation. Constant 

displacement rate tensile test was carried out to induce deformation in the tin-bismuth sample. A low strain 

rate is applied so as to ensure that grain boundary sliding is the dominant deformation mechanism. 

Conventional phase contrast tomography (PCT) was also conducted to monitor and track the movements and 

shape changes of the specimen during tensile tests. 

Specimens with various gauge dimensions have been tested with DCT scans. It was found that specimens 

with a narrow (200 𝜇𝑚 width) gauge allowed stable mechanical testing and suitable number of grains for 

DCT scans. Figure 1 has shown an SEM image of the tensile specimen. The specimen underwent tensile 

deformation at a strain rate of 10−6 controlled by a piezo actuator. PCT scans were taken every 0.3% strain 

to monitor the change in the length with tensile deformation. For around every 5% strain, a diffraction 

contrast tomography (DCT) scan was taken in a small section of the gauge region. From the PCT scans, it 

was found that after 20% strain, the gauge started to have necking as shown in Figure 2. This leads to the 

necessity to carry out another test with improved experiment setup and surface finish of the specimen.  



 

 

Figure 1. SEM image of the tensile specimen. 

 

Figure 2. A phase contrast tomography (PCT) scan, showing the gauge region with necking locally occurring. 

We have carried out preliminary analysis on the DCT data. The reconstructed 2D maps of the initial state (no 

deformation) and after 20% strain are shown in Figure 3 and Figure 4, respectively. Even though the two 

maps are from different slices in the gauge region, they illustrated the feasibility of the DCT reconstruction 

process. In Figure 4, most of the grains are able to be reconstructed even after a large strain of 20% on the 

sample. This is because grain boundary sliding contributed to most of the deformation, while dislocation 

motion plasticity took place in some individual grains. The 3D map reconstruction work is still in progress. 

When the 3D map is available, we would be able to track individual grains during the tensile test process to 

capture grain neighbour switching phenomenon. 

 

Figure 3. Reconstructed 2D map of a section of the gauge region at the initial state (no deformation). 



 

 

Figure 4. Reconstructed 2D map of a different section of the gauge region after 20% strain. 

In order to capture grain neighbour switching phenomenon in 3D, the specimen has to undergo around 50% 

strain. This requires the following improvement to prevent the specimen from necking and ensure that grain 

boundary sliding is the dominant deformation mechanism: 

1. Finer grain size: the previous experiment (MA2895) was on specimens with 30 microns grains, which 

can be further reduced. Finer grain sizes will promote grain boundary sliding, enabling better 

observation of grain neighbour switching phenomena. So the point is to adjust the heat treatment 

recipe to prevent grain growth and get smaller grains than the previous experiment. 

2. The amount of contribution of grain boundary sliding to the total deformation is dependent on the 

strain rate. For the previous test on the sample with 30 𝜇𝑚 grains, a strain rate of 10−6 could enabled 

grain boundary sliding to occur. If we could obtain smaller grains (10 𝜇𝑚) after heat treatment, we 

can speed up the tests to 2 × 10−6, which takes less time to carry out experiments. An additional 

beamtime of four days would be enough to carry out another in-situ tensile test with 10 DCT scans 

(testing to 50% strain with DCT scans at 5% strain intervals).  

3. Better surface finish: electro-polishing may be applied to clean up the gauge region of the specimen. 

This will prevent necking from initiating at the rough surfaces. 

 

 


