

	Experiment title: Missing Fe ²⁺ in microbial synthesis of nanoparticles	Experiment number:			
ESRF	wissing re in merobial synthesis of nanoparticles	HC/2443			
Beamline:	Date of experiment:	Date of report:			
ID18	from: 20/07/2016 to: 26/07/2016	27/10/2016			
Shifts:17	Local contact(s): Chumakov Aleksandr	Received at ESRF:			
Names and affiliations of applicants (* indicates experimentalists):					
Chistyakova Nataliya - M.V. Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory, Moscow, Russia					
Voronina El Kazan, Russ	ena - Kazan Federal University, Institute of Physics, 18 Krer ia	nlyovskaya St.,			
Antonova Angelina - M.V. Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory, Moscow, Russia					

Report:

The nuclear inelastic scattering (NIS) measurements of control samples and samples obtained in an extracellular reduction of amorphous Fe(III)-hydroxide (AFH) by anaerobic bacterium *Geoalkalibacter ferrihydriticus* (strain Z-0531) [1] with different AFH and anthraquinone-2,6-disulfonate concentrations were performed at 7/8 mode of storage ring operation at room temperature (295 K) with the energy resolution of about 0.55 meV. Phonon spectra were measured for 9 samples. Number of scans depends on the sample and on the average was about 13. We performed additional scans for some samples (NC2, NC5 with different content of ferrous atoms) to get better statistics. Time spectra of the nuclear forward scattering were measured to initially observe the difference in particle size and Fe²⁺ content in the samples.

Density of phonon states (DOS) was fitted from energy spectra [2]. Since the experimental samples were a mixture of several phases, the phonon spectra of reference phases were measured. Figure 1 shows DOS of siderite (red line), bulk magnetite (green line), synthesized magnetite (blue line), synthesized ferrihydrite (black line). Figure 2 shows reduced DOS of these minerals. Figure 3 shows DOS of experimental samples obtained during the bacterial growth. The graphs are arranged in Fe²⁺ concentration increasing (from the lowest concentration in NC5 to the biggest NC3). It is well seem that DOS spectra are different for these samples. Energy NIS spectra treatment was performed by SpectrRelax [3] using three reference spectra. The relative concentration of Fe²⁺ atoms obtained from NIS spectra presented in table 1 are in a good agreement with this concentration obtained by chemical methods.

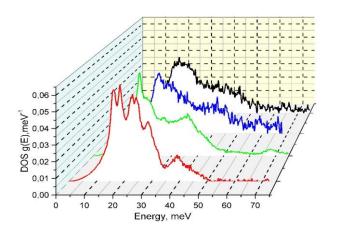
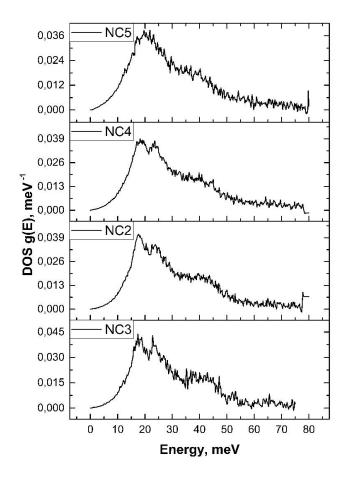



Figure 1. The derived density of vibrational states (DOS) g(E) of reference samples.

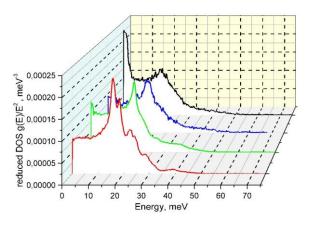


Figure 2. Reduced DOS $g(E)/E^2$ of reference samples.

Figure 3. The derived density of vibrational states (DOS) g(E) of experimental samples obtained during the bacterial growth.

References

- Zavarzina D G, Kolganova T V, Boulygina E S, Kostrikina N A, Tourova T P and Zavarzin G A, Microbiology 75, 673 (2006).
- 2. Chumakov A.I., Sturhahn W., Hyperfine Interactions 123/124, 781-808 (1999).
- Matsnev M.E., Rusakov V.S. AIP Conf. Proc. 1489, 178-185 (2012).

Table 1. The relative contents of siderite, ferrihydrite and magnetite in the experimental samples.

Sample	Relative Content, %			Relative concentration, %
	Siderite	Ferrihydrite	Magnetite	$\sum Fe^{2+}$
NC3	32.2±3.1	41±5	27±4	~ 41
NC2	33.2±2.1	41±4	26±3	~ 41.1
NC4	14.6±1.5	70.3±2.4	15.2±2.1	~ 19.6
NC5		80.3±2.2	19.7±2.2	~ 6.6