ESRF	Experiment title: Transient disordered states on the route to NaYF ₄ :Eu luminescent nanocrystals	Experiment number : SC-4259
Beamline:	Date of experiment:	Date of report:
ID02	from: 15/04/2016 to: 18/04/2016	
Shifts:	Local contact(s):	Received at ESRF:
9	Dr. Sylvain Prevost	
Names and affiliations of applicants (* indicates experimentalists): Dr. David CARRIÈRE*, Dr. Fabienne TESTARD*, Dr. Corinne CHEVALLARD*, Dr. Raj-Kumar RAMAMOORTHY*, Alexy FREITAS* Laboratoire LIONS, CEA de Saclay DSM, IRAMIS, NIMBE		
F-91191 Gif-sur	-Yvette Cedex FRANCE	

Objective and summary of results:

The aim of the session was to investigate the formation of luminescent NaYF₄:Eu nanoparticles in solution upon mixing of two cationic and anionic aqueous precursors $(Y_{0.95}Eu(NO_3)_3)$ and NaF, respectively). The goal is to identify whether crystallization in an ionic solutions, where no speciation effects are expected, form via intermediate states ("non-classical" nucleation: liquid-liquid phase separation, amorphous particles, etc.) or by ion-by-ion growth (classical nucleation), and compare the structural data with theoretical predictions: time-evolution of the crystal/amorphous particles numeric concentrations, sizes, and volume fractions.

We aimed at collecting SAXS and WAXS data, in situ, in the 60 μ s to hour reaction time range. In order to span the complete reaction time range, we proposed to use three setups, namely i) a microfluidic setup (t=60 μ s - 10ms) ii) a stopped-flow setup (t=6ms - 10mins) and iii) a peristaltic setup (t =20s - 1h).

As a summary, we managed to collect SAXS and WAXS data in the 6ms-90mins reaction time range both for the NaYF₄:Eu synthesis, but also for a YF₃:Eu synthesis. A first analysis reveals clearly a nonclassical nucleation scenario, and we expect from the data a complete study of the amorphous-tocrystal conversion. We were not able to carry out the reactions in the microfluidic chips; however, we could successfully record the SAXS/WAXS signal of ripened luminescent nanocrystals (YVO₄:Eu), which opens solid perspectives for another session to come.

Results:

NaYF₄:Eu and YF₃:Eu syntheses in the 6ms – 10mins reaction time range (stopped-flow setup).

Both reactions have been studied using our commercial stopped-flow setup. Prior to experiments, we have measured in the laboratory a minimal mixing time of 6ms using a chemical reaction with known kinetic constant.

We used acquisition times of 5ms (YF₃:Eu syntheses) and 20ms (NaYF₄:Eu). In order to record reaction times of 6ms without degradation of the temporal resolution by the acquisition time, we used a specific injection sequence allowing us to record 3 to 5 frames as the reactive mixture was flowing (hence, at a constant reaction time of 6ms), before stopping the flow. With this strategy, we recorded scattering patterns at reaction times of 6ms with an excellent signal-to-noise ratio (Figure 1). We observed that at such short reaction times, the low-angle scattering amplitude is already orders of magnitude higher than that of the precursors, while no Bragg peak is observed. This demonstrates that the nanocrystals form from a fractal amorphous matrix.

Figure 1. SAXS/WAXS pattern recorded for a NaYF₄:Eu reaction, at reaction time t=6ms, using the stopped-flow setup in a lost-flow configuration.

The SAXS/WAXS patterns at reaction times below t = 600s show some evolutions on either sides of q=0.01Å⁻¹, Figure 2, but no Bragg peak is observable (Figure 3). This is qualitatively assigned to the formation of nanometer-scaled particles with a crystal coherence length below 1nm, viz. amorphous particles, or small crystals. While the same trend is observed, with slower rate, for the YF₃:Eu synthesis.

Figure 2. SAXS/WAXS patterns recorded during a NaYF4:Eu synthesis with the stopped-flow setup.

Figure 3. WAXS patterns recorded during a NaYF₄:Eu synthesis with the stopped-flow setup.

NaYF₄:Eu and YF₃:Eu syntheses in the20s–30min/1h reaction time range (peristaltic setup).

Longer reaction times could be recorded by carrying out the same $NaYF_4$:Eu and YF_3 :Eu syntheses in a home-made setup where the reactive medium circulates in a closed loop using a peristaltic setup, and flows through the kapton capillary. We used acquisition times of 10 ms and 200 ms for USAXS and SAXS/WAXS, respectively.

During measurements, we have observed that the thickness of the kapton capillary changed significantly. This was due to a progressive collapse stemming from negative pressures induced by the circulation of the solution. However, we could correct offline for the thickness variation using the water signal as a reference. The post-treatment was validated by the consistency of the SAXS/WAXS data recorded with the stopped-flow setup; another indication of the validity is that the total volume

fraction of amorphous+crystal phase, calculated by the invariant theorem (integration of Iq²) is found constant along the reaction, consistent with an amorphous-to-crystal conversion at constant volume fraction.

For both reactions, the early stages are consistent with the data recorded with the stopped-flow setup. At later stage, for NaYF₄:Eu, we observe a low-angle signature assigned to the formation of the nanocrystals simultaneously to the emergence of Bragg peaks (Figure 4 and Figure 5).

Figure 4. Selected SAXS/WAXS patterns recorded during a NaYF₄:Eu synthesis with the peristaltic setup.

Figure 5. Selected WAXS patterns recorded during a NaYF₄:Eu synthesis with the peristaltic setup.

While for YF₃:Eu, there is a significant change of signal detected below q<0.1 Å⁻¹ (Figure 6) but with no evidence of crystallization in the wide angle between 1-4.5 Å⁻¹ (Figure 7). This clearly indicating that amorphous network – amorphous particles – crystal transformation is occurring in the YF₃:Eu synthesis.

Figure 6. Selected SAXS/WAXS patterns recorded during a YF₃:Eu synthesis with the peristaltic setup.

Figure 7. Selected WAXS patterns recorded during a YF_3 : Eu synthesis with the peristaltic setup.

YVO₄:Eu nanoparticles in the microfluidic chips.

The microfluidic chips have been designed and constructed in our laboratory. They consisted of a mixing unit (a so-called "butterfly mixer") followed by an inspection channel which was 50μ m thick in the direction of the beam, and 100μ m wide perpendicular to the beam. The chip was constructed in a UV-curable optical glue. Prior to experiments, we had checked that the chips are X-ray transparent and poorly scatter. The chip were mounted on the beamline with a home-made stage.

We needed one full shift to align the chip with water flowing, by measuring the X-ray transmission. We finally succeeded in recording the SAXS/WAXS signal of YVO₄:Eu nanoparticles (40nm diameter) flowing in the observation channel. After subtracting the signal from the chip with water flowing and dividing by the nominal thickness of the channel (50 μ m), we recovered a SAXS/WAXS signal which is in very good agreement with that of the same sample measured in a 2mm-thick kapton capillary (Figure 6 and Figure 7).At 1.2Å⁻¹, we also observe a broad peak which increases as the chip is scanned, assigned to beam damage. However, it doesn't overlap with the regions of interest.

Figure 6. SAXS/WAXS signal of a dispersion of YVO4:Eu nanoparticles in water measured in a 2mm thick kapton capillary (black, 5ms acquisition time), and in a 50µm thick microfluidic channel (red, 10s acquisition time).

Figure 7. SAXS/WAXS signal of a dispersion of YVO4:Eu nanoparticles in water measured in a 2mm thickkapton capillary (black, 5ms acquisition time), and in a 50µm thick microfluidic channel (red, 10s acquisition time).

This microfluidic session allowed us to conclude that the chip are suitable for use in SAXS/WAXS experiments. We decided the following improvements after the session: i) increase the channel thickness along the beam to $80\mu m$ ii) design a portable optical setup to be carried to the beamline for the experiments to come, and iii) mount the chips under a laminar hood, either portable or available at ESRF.

Justification and comments about the use of beam time:

9 shifts were allotted. They have been utilized as follows: 1 shift was used for aligning the microfluidic chip and recording water and YVO_4 nanoparticles using it. After microfluidic testing, another shift was utilized to configure the beam and detector for the continuous flow set-up. 3 shifts were dedicated for following syntheses (NaYF₄:Eu and YF₃:Eu), between 20s–30min/1h reaction times, using peristaltic set-up. 2 shifts were devoted for final states measurements and for modifying the configuration suitable for stopped flow experiments. 3 shifts were used for following syntheses (NaYF₄:Eu and YF₃:Eu), between $4F_3$:Eu), between $4F_3$:Eu),