$\overline{ ext{ESRF}}$	Experiment title: The nature of complex phase transition in $Ni_3(BO_3)_2$ and mixed $Co_2Ni(BO_3)_2$ antiferromagnetic borates	Experiment number: 01-02-1112
Beamline: BM01	Date of experiment: from: September 29, 2016 to: October 3, 2016	Date of report: October 24, 2016
Shifts: 12	Local contact(s): Dmitry Chernyshov	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

M.A. Prosnikov*,R.M. Dubrovin*,S.G. Nefedov*,R.V. Pisarev Ioffe Institute, St.-Petersburg, Russia

Report:

. : : : .

Part of the monocrystalline samples were prepared before experiment, but other and powders were prepared in the sample preparation room of BM01 beamline. Beam with energy of 17 keV was used. We successfully achieve temperatures below phase transitions ($T_N \approx 46 \text{ K}$ for Ni₃(BO₃)₂ and $T_N < 46 \text{ K}$ Co₂Ni(BO₃)₂) for our samples with the use of helium blower cryostate. It should be noted, that temperature was independently measured by the luminescence ($\approx 14440 \text{ cm}^{-1}$ lines) of the ruby crystals. Very weak superstructure reflexes were observed and currently analyzing.

High quality and stability of the beam and assistance of the beamline staff and our local contact allowed us to measure additional samples: single crystals and powders of fluorides, namely KCoF₃, RbCoF₃ and KNiF₃. These crystals have perovskite cubic structure at room temperature and some of them undergoes coupled magnetic-structural phase transitions. Nevertheless there are no complete understanding of mechanisms of this complex transitions as well as high resolution single-crystal diffraction data for this ftorides.

As it was expected we found very weak splitting of the reflexes of the single-crystal samples (Fig.1). Preliminary hypothesis is the second-order phase transition (independently confirmed by heat capacity measurements) to tetragonal phase.

In the last days a few orthorombic Pb containing borates were studied too, namely PbFeBO₄ and PbMnBO₄. The structure of these crystals contain lone-pair Pb ions, rigid BO₃ groups and edge-shared chains of the magnetic ions. Early results shows that PbFeBO₄ have anomalous anisotropic thermal expansion due to the presence of the mentioned structural peculiarities, so, we can expect similar effect in PbMnBO₄.

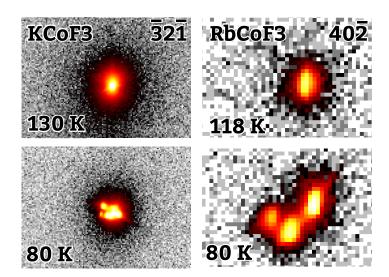


Figure 1: Splitting of the reflexes below Neel temperatures for KCoF₃ ($T_N=114~{\rm K}$) and RbCoF₃ ($T_N=101~{\rm K}$)

Obtained data is currently being processed. Results of the measurements will be used for the preparation of manuscripts.