ESRF	Study of the local structure in chalcogenide Superlattice used for Topological switching Random-Access Memory (TRAM)	number: MA-3172
Beamline:	Date of experiment:	Date of report:
BM08	from: 10/19/2016 to: 10/25/2016	11/08/2016
Shifts:	Local contact(s):	Received at ESRF:
18	F. d'Acapito	

Evneriment

Names and affiliations of applicants (* indicates experimentalists):

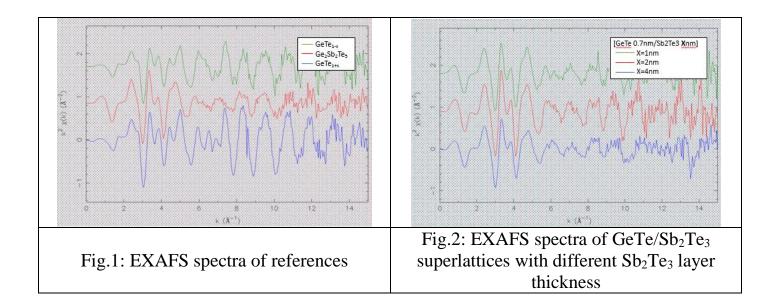
Philippe KOWALCZYK, UGA, CEA-Leti and LTM (*)

Experiment title

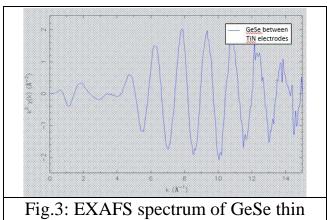
Francesco DACAPITO, CNR-IOM-OGG c/o ESRF (*)

Chiara SABBIONE, CEA-Leti (*)

Pierre NOÉ, CEA-Leti (*)


Françoise HIPPERT, LNCMI-EMFL-CNRS, UGA, INSA, UPS

Report:


GeTe/Sb₂Te₃ chalcogenide superlattice samples have been investigated at the Ge-K edge in fluorescence mode. The machine was in 7/8+1 multibunch mode allowing EXAFS measurement thanks to the high flux. The samples were mounted on the GIXAS setup in order to make data collection at low incidence angle (2 deg) with a parallel polarisation. All samples were measured at 100K allowing an intensity exaltation of the EXAFS signal at high k. Different references and superlattices were successfully investigated, in particular:

- GeTe and Ge₂Sb₂Te₅ reference samples. $k^2 \chi(k)$ spectra of crystalline samples are plotted in *Fig.1*.
- [GeTe/Sb₂Te₃] superlattice samples of 24 periods with optimized thickness of 0.7 nm for GeTe layer and Sb₂Te₃ spacing layer thickness of 1, 2, 4 and 8 nm respectively. Evolution of $k^2 \chi(k)$ spectra depending of the Sb₂Te₃ layer thickness is given in *Fig.2*.
- [GeTe/Sb₂Te₃] superlattice samples as a function of deposition conditions (growth temperature, substrate preparation).

Finally, data on 16 samples were successfully collected with sufficient signal to noise ratio to permit a complete quantitative data analysis. This should in principle permit to understand the Ge environnement in GeTe/Sb₂Te₃ superlattice samples.

Preliminary data on a GeSe device shows a possible analysis of Ge environment through TiN electrodes. The EXAFS spectrum of the device is given in Fig.3. It will be the object of a forthcoming proposal.

film beetween two TiN electrodes