ESRF	Experiment title: Reitveld Refinement of Solid Oxygen High-Pressure Phases and Research for Molecular Dissociation	Experiment number: HS-128
Beamline: ID 30	Date of Experiment:from:25 Sept. 1996to:30 Sept. 1996	Date of Report: 31 Jan. 1997
Shifts: 15	Local contact(s): Daniel HÄUSERMANN	Received at ESRF : 3 MAR. 1997

Namés and affiliations of applicants (*indicates experimentalists):

Yuichi AKAHAMA	Faculty of Science, Himeji Institute of Technology			
Daniel HAUSERMANN	ESRF			
Martin KUNZ	ESRF			

Report:

Pressure-induced metallization and molecular dissociation of oxygen, O_2 , with molecular magnetism have attracted special interest because of novel electronic and magnetic properties of the high-pressure phases. Determination of the structural properties of these phases is indispensable for understanding the electromagnetic properties. Recently, by using a high-brilliance beam of ESRF, we have observed a new structural transition from the ε to ζ phase at 96 GPa corresponding to **metallization[1]**. Further studies on high-pressure phases of solid oxygen were carried out as follow.

1. Research for molecular dissociation

Powder diffraction patterns, which were obtained at pressure up to 15 1 GPa by an angledispersive method with λ =0.4249Å, are shown in Fig. 1. The transition to the ζ phase at 96 GPa reappears in the figure. Figure 2 shows the pressure dependence of the d-values of the diffraction peaks. The present data well agree with previous ones[1]. Both results above 96 GPa indicate none of **sign** for a structural transition. To determine and refine the structure of the ζ phase the lines from a metal gasket ought to be removed from the pattern. Further experiments at higher pressure are needed for observation of molecular dissociation.

2. Reitveld refinement of the ε phase

The space group of C2/m has been proposed for the ε phase but the atomic positional parameter are not determined. For Reitveld refinement of the ε phase, a high-quality powder diffraction patterns were obtained at 13.7,17 and 2 1 GPa and a structural analysis was done. A possible

arrangement of oxygen molecules in the unit cell shown in Fig. 3 was proposed. Then the intermolecular distance of O_2 was fixed at 1.2Å. But strong preferred-orientation of the sample was difficult to further reline the structure.

3. Single-crystal analysis of the ϵ phase

The single crystal of the ε phase was grown under a condition of 20 GPa and 650 K in a DAC for the crystal structure analysis. A preliminary experiment was carried out by oscillating the sample and Bragg reflections from the single crystal were observed. It is clear now that the single-crystal analysis of the ε phase is feasible.

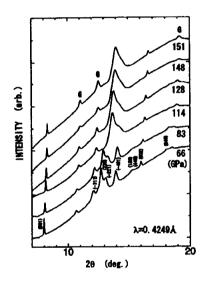


Fig.1 Diffraction patterns of solid O₂.

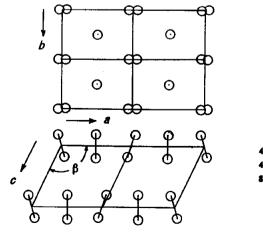


Fig.2 Pressure dependence of d-values. Open circles show the previous data[1].

		mon	oclinic latt	ice :	C2/m		
		\$	ı= 7.681Å				
		1)≖ 5.414Å				
		c	= 3.644Å				
	β= 116.6° Z= 8 molecules						
	(0-0	length: 1.2	Å,	tilt angle: 25°		
ţ	i	m	(x,0,z); (x,),ž) (0.070, 0.00, 0.156)		
ŀ	i	m	(1,0,z); (ī,), 2) (9.501, 0.00, 0.156)		
ł	j	1	(x,y,z); (x,j	î,z) (0.037, 0.25, 0.184)		
			(ī,y,ī); (ī,j	7, z)			

Fig.3 A possible model of the structure for the εO_2 phase at 22.6 GPa.

[I] Y.Akahama et al. Phys. Rev.Lett. 74(1995)4690.