ESRF	Experiment title: Structural studies of fullerenes and heterofullerenes at high pressures and low temperatures	Experiment number: HS 145
Beamline: ID30	Date of experiment: from: 17 Oct. 96 to: 22 Oct. 96	Date of report: 29/8/97
Shifts: 12	Local contact(s): M. Kunz	Received at ESRF: 1 SEP. 1997

Names and affiliations of applicants (* indicates experimentalists):

K. Prassides,* C.M. Brown,* K. Vavekis,*

School of Chemistry, Physics and Environmental Science, University of Sussex, Falmer, Brighton BNI 9QJ. UK

K. Tanigaki, NEC Fundamental Research Laboratories, Tsukuba 305, Japan

M. Kunz* ESRF

Report:

The origin of the faster depression of T_c with decreasing interfullerene separation in $Na_2(A,A')C_{60}$ (A, A'= alkali metals) has attracted considerable interest for a number of years. Empirically it appeared that the primitive cubic (Pa3) structure adopted could sensitively affect the electronic properties by modulating the electron hopping between neighbours and leading to a faster depression of $N(\varepsilon_{\rm F})$, and hence of T,, with reduced interfullerene separation. However, of particular importance was the observation that upon the application of pressure, 1 the sample with stoichiometry Na₂RbC₆₀ appeared to undergo a symmetry- lowering transition to a phase which was described as orthorhombic and resembled the structure of the RbC60 polymer. Following our recent experimental work² on the Na₂(A,A')C₆₀ structures at ambient pressures, we identified the formation of a polymeric phase at low temperature with monoclinic symmetry (space group $P2_{1/a}$), comprising of C_{60}^{3-} chains bridged by single C-C bonds. As part of our present beam allocation on ID30, we performed angle dispersive X-ray diffraction measurements at pressures up to 10 GPa on Na₂RbC₆₀. We indeed identify the formation of the monoclinic polymeric phase which forms at pressures higher than 2 kbar (Fig. 1). The ambient pressure cubic phase appears very resilient and a large fraction of it appears to survive to pressures as high as 50 kbar. Fig. 2 shows the

pressure dependence of the lattice constants of the monoclinic (space group $P2_1/a$) Na₂RbC₆₀ phase.

References

[I] Q. Zhu et al., Phys. Rev. B 1995,51, 3966.

[2] Prassides, K. et al., J. Am. Chem. Soc. 1997, 119, 834; Cristofolini, L. et al., Chem. Commun. 1997, 375; Bendele, G. M. et al., submitted.

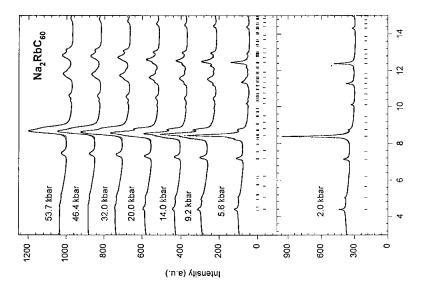


Fig. 1 Rietveld refinements of the high pressure synchrotron X-ray diffraction profiles of Na₂RbC₆₀ (λ = 0.620 Å). The 2 kbar data show the presence of the Pa3 cubic phase, while at higher pressures a 2-phase refinement has been used, including a fraction of the monoclinic polymer phase that increases with increasing pressure.

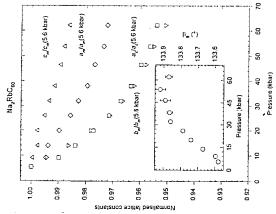


Fig. 2 Pressure dependence of the lattice constants of the monoclinic structure of Na₂RbC₆₀.