

ESRF	Experiment title: In-situ XRD/XANES study of Fe2O3@CeO2 core-shell structures decorated with Pt nanoparticles for effective thermochemical water splitting	Experiment number: ME 1444
Beamline:	Date of experiment:	Date of report:
BM31	from: 19.04.2017 to 25.04.2017	25-07-2019
Shifts:	Local contact(s):	Received at ESRF:
18	Michela Brunelli	
Names and affiliations of applicants (* indicates experimentalists):		
Davood Hosseini*, Paula M. Abdala*, and Christoph Müller		
Laboratory of Energy Science and Engineering, Institute of Energy Technology, ETH Zurich, Leonhardstrasse 27, 8092 Zurich, Switzerland		

Report:

Abstract

We report on the development of a bifunctional catalyst (Pt) - oxygen carrier (Fe₂O₃) that integrates the dry reforming of methane (DRM) into the chemical looping-based production of hydrogen. The material exhibits a high and stable methane conversion (" 80%) and hydrogen yield (10.8 mmol/g catalyst-oxygen carrier) with only a small quantity of impurities (CO, CO₂ < 2 ppm). The structural changes of the material are followed by operando X-ray powder diffraction and X-ray absorption spectroscopy coupled with gas chromatography. Insight into the evolution of the size of the Pt nanoparticles and their interaction with CeO₂ are probed by transmission electron microscopy and X-ray absorption fine structure analysis. Under DRM conditions, the Pt nanoparticles grow in size, however, their re-dispersion on the CeO₂ support (via PtO_x-support interaction) during air oxidation recovers their activity in the consecutive cycle.¹

Publication:

1. Hosseini, D.; *Abdala, P. M.*; Donat, F.; Kim, S. M.; Müller, C. R., Bifunctional core-shell architecture allows stable H₂ production utilizing CH₄ and CO₂ in a catalytic chemical looping process. *Applied Catalysis B: Environmental* **2019**, 117946.