ESRF	Experiment title: Synthesis of the first xenon nitride: Determination of the structure and stoichiometry		Experiment number: HC-3086			
Beamline:	Date of experiment:		Date of report:			
ID27B	from: March 16 th 2017 to: March 19 th 2017	(5 shifts)	30/08/2017			
	from: May 20 th 2017 to: May 23 th 2017 (4	l shifts)				
Shifts:	Local contact(s):		Received at ESRF:			
9	Gaston Garbarino					
Names and affiliations of applicants (* indicates experimentalists):						
Dominique Laniel* – CEA, Bruyères-le-Châtel, DPTA/SPMC, LHPS						
Gunnar Weck* – CEA, Bruyères-le-Châtel, DPTA/SPMC, LHPS						

Objectives

Both N₂ and Xe are inert under ambient conditions and hardly interact with other elements. Under pressure, the properties of both elements drastically change and their chemistry becomes richer. The XeF₂ solid [1] as well as the Xe₃O₂ and Xe₂O₅ [2] compounds have been formed at high pressure and have shown to be composed of covalent bonds. Recently, we have produced the first xenon nitride with indications of N-N and Xe-N single covalent bonds [3], similar to theoretically predicted XeN₆ solid [4]. The aim of this proposal was to characterize this newly-synthesized Xe-N compound by X-ray diffraction in order to determine its structure and stoechiometry. Pressure and temperatures in the range 150 GPa – 200 GPa and 1500 – 3000 K, respectively, were generated in a laser-heated diamond anvil cell so as to enter the stability domain of the Xe-N solid. During sample decompression, X-ray diffraction measurements at regular pressure steps were attempted so as to obtain the compound's equation of state as well as its stability domain.

Experimental method

Three membrane diamond anvil cells were equipped with anvils of 70 (2x) and 50 μ m in culet size. All cells were loaded with a Xe-N₂ mixture, with xenon concentrations of 20, 15 and 5 mol%. A gold particle was loaded along with the sample and its equation of state was used to determine the pressure inside the experimental chamber. While chemical insulation of the sample was previously shown not to be necessary, one of the samples (with 20 mol% Xe) had a thin Al₂O₃ layer deposited on both diamond anvils and acted as a thermal insulator. Double-sided YAG laser-heating was performed with the on-line setup of ID27, allowing black-body radiation temperature measurements. Angular dispersive powder X-ray diffraction was performed, using a monochromatic beam of energy E = 33 keV, between each pressure step as well as before and after laser-heating. The X-ray diffraction images were collected with an on-line image plate detector (MARCCD). The beam was focussed down to ~ $3x3 \mu m^2$.

Previously to the beamtime, all samples were dynamically compressed to 70 GPa. This rapid compression prevented the formation of the $Xe(N_2)_2$ van der Waals compound, previously established to be extremely stable [5] and hinder the synthesis of the Xe-N compound. In doing so, amorphous Xe and N₂ (see Fig. 1 a)) were observed before laser-heating.

Results

The results obtained are summarized in Table 1. The first sample (20 mol% Xe) was compressed to 170 GPa, pressure at which it was laser-heated to 2300 K for a few minutes. As shown in Fig. 1, laser-heating of the amorphous $Xe+N_2$ mixture resulted in many new diffraction lines. While some diffraction lines match $Xe(N_2)_2$ or the high pressure and high temperature phase of Al_2O_3 , others fit with the previously-observed Xe-N covalently-bonded solid. Decompression of the sample was then attempted, but after a 5 GPa pressure decrease one of the diamonds gave away, allowing the sample to escape the experimental chamber.

Run	Concentration	Insulating layer	Laser-heating	Laser-heating	Chemical
	(mol% Xe)		pressure (GPa)	temperature (K)	reaction
1	20	Al_2O_3	170	2300	Yes
2	5	None	131	2500	Yes
3	15	None	205	-	-

Table 1: Summary of the three experimental runs performed on the $Xe-N_2$ system at high pressure and high temperature.

Figure 1: X-ray diffraction image plates of a Xe-N₂ sample (20 mol% Xe) at 170 GPa. (Left) As seen, before laser-heating the sample appears amorphous and does not show diffraction rings characteristic of the Xe(N₂)₂ van der
Waals compound. This was observed from all dynamically-compressed samples. The diffraction spots belong either to the diamond anvils or the thin Al₂O₃ layer. (Right) Image plate after laser-heating the sample at 2300 K at 170 GPa. Diffraction rings appear and some match those previously observed and assigned to a new Xe-N compound. Other diffraction rings belong to Xe(N₂)₂ and the high pressure and high temperature phase of Al₂O₃.

The second sample, of greater nitrogen concentration (5 mol% Xe) and without an insulating layer on the diamond anvils, was laser-heated to 2500 K at 148 GPa. As shown in Fig. 2, diffraction rings similar to those observed from the first sample appeared. Again, some of them correspond to the diffraction lines of $Xe(N_2)_2$ or the Xe-N compound, but others match cg-N. The synthesis of a pure form of nitrogen, cg-N, not found in the previous run, indicates the Xe-N compound to be of nitrogen concentration between 80 and 95 mol% N₂. Once again, a diamond anvil broke when attempting sample decompression.

Figure 2: X-ray diffraction image plate of a Xe-N₂ sample (5 mol% Xe) at 148 GPa after laser-heating at 2500 K. Slightly textured, the diffraction rings match those expected from $Xe(N_2)_2$, cg-N as well as the Xe-N solid.

The last sample was prepared with a 15 mol% Xe concentration. To favor the synthesis of the Xe-N compound instead of $Xe(N_2)_2$, pressure was increased to 205 GPa before laser-heating. However, one of the anvils ruptured during heating, releasing the pressure and therefore the sample. A deeper analysis of the data obtained during the three experimentals runs will be necessary to solve the structure of the Xe-N compound.

References

- [1] M. Kim, M. Debessai and C.-S. Yoo, Nat. Chem. 2, 784 (2010).
- [2] A. Dewaele et al. Nat. Chem. 8, 784-790 (2016).
- [3] D. Laniel et al. ESRF experimental report hc-2182 (2016).
- [4] F. Peng et al. PRB 92, 094104 (2015).
- [5] D. Laniel et al. PRB 94, 174109 (2016).