ESRF	Experi Structu	ment title: ral search for PdH	Experiment number: HC-3382					
Beamline:	Date of	f experiment:	Date of report:					
ID27	from:	21/10/2017	to:	24/10/2017	27/02/2018			
	from:	14/02/2018	to:	17/02/2018				
Shifts:	Local o	contact(s): M. Me	Received at ESRF:					
12								
Names and affiliations of applicants (* indicates experimentalists):								
Guigue Bastien*								
Loubeyre Paul*								

Report:

In 1972, the observation of superconductivity in PdH_x with x~0.75 at ambient pressure, was the first demonstration of how the addition of hydrogen can greatly improve the superconducting properties of a metal [1]. PdH has also been extensively studied as an hydrogen storage material. There is currently a great interest in the study of hydrides under pressure since pressure is expected to favor the formation of polyhydrides that hold great promise as a class of high temperature superconductors

The aim of this proposal was to investigate the stable compounds in Pd-H systems under pressure. *Ab initio* calculations [3] show that PdH_2 could be stable in the 20-30 GPa range but that taking into account the H zero point motion contribution, the rock-salt-like PdH should be the only structure stable up to 100 GPa for the Pd-H systems. Yet, zero point motion contribution being smaller for D atoms in interstitial site, PdD_2 could be stable.

We therefore performed a detailed structural study of the palladium hydrides synthesized directly under pressure by laser heating mixtures of $Pd+H_2$ and $Pd+D_2$ up to 100 GPa and 50 GPa respectively. We also studied a palladium sample embedded in Ne to measure a reference equation of state so to estimate reliably the volume expansion per H atom. We have carried out five experiments at 300 K, in different pressure ranges. The sample was annealed using a YAG laser, at various pressures (see Table 1). The temperature reached was about 1300 K. The pressure was measured using either a gold volumic gauge or ruby luminescence gauge. The volume was measured using angular-dispersive x-ray diffraction. The conditions of the experiments are summarized in **Table 1**.

Name	Sample	Culet diameter (µm)	Pressure range (GPa)	T (K)	P laser annealing (GPa)
Run 1	Pd+H ₂	300	0.1 - 32	300	25
Run 2	Pd+H ₂	150	46 - 104	300	79
Run 3	Pd+H ₂	150	36 - 86	300	85.5
Run 4	Pd+D ₂	300	0.3 - 50	300	25, 44
Run 5	Pd+Ne	300	0.7 - 62	300	-

Table 1: Conditions of the five experimental runs.

The measurements of V vs. P for palladium, palladium hydride and palladium deuteride at 300 K are plotted in **figure 1a**. In **figure 1b** is shown a zoom in the 0 - 5 GPa range. PdH and PdD form spontaneously, with a "loading" phase belown 1 GPa. Above 1 GPa, a 1:1 stoichiometry is reached as magnetic measurements conducted in our lab on a SQUID magnetometer confirmed [4]. A clear isotopic shift between the V(P) of PdH and PdD is observed, of about 0.7 % at ambient pressure, essentially due to the zero point motion effect of H/D in octahedral sites. We performed several laser heatings, and the volume remained unchanged. PdH is stable up to 100 GPa. PdD is observed stable up to 50 GPa. A fine analysis of these results is being made to disclose a possible fraction occupancy of tetrahedral sites in PdD.

References:

- [1] T. Skoskiewixz, Phys. Status Solidi 1 11, K123 (1972)
- [2] H. M. Syed, Preprint at: https://arxiv.org/abs/1608.01774 (2016)
- [3] I. Errea, Phys. Rev. Lett. 111, 177002 (2013)
- [4] A. Marizy, High Pres. Res. 37:4, 465-474 (2017)

Figure 1:

(a) Evolution of the volume as a function of pressure for Pd, PdH and PdD together with the Vinet fits of the data. Stars show the laser heating processes. The increase in volume from Pd to PdH/PdD is about 2.5 \AA^3 at low pressure.

(b) Zoom in the 0 - 5 GPa range of the equation of states. One can see a "loading" phase below 1 GPa were octaedral site of the Pd lattice are spontaneously filled, reaching PdH with 1:1 stoichiometry around 1 GPa (as confirmed with a SQUID magnetic measurement).