ESRF	Experiment title: Synthesis of novel highly energetic Li-N compounds under extreme conditions	Experiment number: HC 3387
Beamline:	Date of experiment:	Date of report:
ID27	from: November 25 th 2017	26/02/2020
	to: November 28 th 2017	
Shifts: 9	Local contact(s): Gaston Garbarino	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):		
Dominique Laniel* – CEA, Bruyères-le-Châtel, DPTA/SPMC, LHPS		
Gunnar Weck* – CEA, Bruyères-le-Châtel, DPTA/SPMC, LHPS		

The work performed during this beamtime lead to two articles.

1. D. Laniel, G. Weck, G. Gaiffe, G. Garbarino, and P. Loubeyre, High-Pressure Synthesized Lithium Pentazolate Compound Metastable under Ambient Conditions, *The Journal of Physical Chemistry Letters* **9**, 2018.

Abstract: Polynitrogen compounds have been actively pursued driven by their potential as ultra-high-performing propellants or explosives. Despite remarkable breakthroughs over the past two decades, the two figures of merit for a compelling material, namely a large fraction of nitrogen by weight and a bulk stability under ambient conditions, have not yet been achieved. We report the synthesis of a lithium pentazolate solid by compressing and laser-heating lithium embedded in molecular N₂ around 45 GPa along with its recovery under ambient conditions. The observation by Raman spectroscopy of vibrational modes unique to the cyclo-N₅⁻ anion is the signature of the formation of LiN₅. Mass spectroscopy experiments confirm the presence of the pentazolate anion in the recovered compound. A monoclinic lattice is obtained from X- ray diffraction measurements and the volume of the LiN₅ compound under pressure is in good agreement with the theoretical calculations.

 D. Laniel, G. Weck, and P. Loubeyre, Direct Reaction of Nitrogen and Lithium up to 75 GPa: Synthesis of the Li₃N, LiN, LiN₂, and LiN₅ Compounds, *Inorganic Chemistry* 57, 2018.

Abstract: A wide variety of Li-N compounds are predicted as stable under pressure and associated with various nitrogen anionic moieties. Accordingly, the LiN₅ compound was recently synthesized at 45 GPa by the direct reaction of nitrogen and lithium. In this study, we present an experimental investigation of the Li-N binary phase diagram from ambient pressure up to 73.6 GPa. The samples loaded in the diamond anvil cells were constituted of pure lithium pieces embedded in a much greater quantity of molecular nitrogen and, at incremental pressure steps, were laser-heated to produce the thermodynamically favored solid. The following compounds are observed: Li₃N, LiN₂, LiN as well as LiN₅, and their pressure stability domain is disclosed. Two are synthesized for the first time, namely *Cmcm* LiN and *P*6₃/*mmc* LiN₂. Both are structurally resolved and characterized by X-ray diffraction and Raman spectroscopy measurements. Their high bulk modulus is characteristic of charged N₂ dimers.