

ESRF	Experiment title: Resonant inelastic X-ray scattering studies of thorium compounds	Experiment number: 20-01-800
Beamline:	Date of experiment:	Date of report:
BM20	from: 01.10.2017 to: 04.10.2017	05.03.2018
Shifts: 18	Local contact(s): Kristina Kvashnina, BM20, ESRF	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists): Kristina Kvashnina, ESRF, Grenoble Jurij Galanzew, ESRF, Grenoble		

Our understanding of actinide chemistry lags behind that of the reminder of the periodic table [2-5]. There are some knowledge gaps in fields controlling the chemical reactivity and bonding mechanisms between Th and ligands in complex actinide systems. We report here, the results of HERFD and RIXS experiment at the Th L_3 edge for different Th systems, performed at Rossendorf Beamline (BM20) of ESRF [1].

The content of thorium (Th) on the earth's crust is three to four times higher that of the uranium, so the idea of using thorium as the main component of nuclear fuel is developing.^[2] currently In recent years High Energy Resolution Fluorescence Detected (HERFD) and Resonant Inelastic X-ray Scattering (RIXS) were shown to be a highly valuable tool for investigation of the electronic structure of actinides. Also methods for ab initio codes like FEFF9.6 underwent drastical improvement, especially for the *f*-element systems.

EXPERIMENT

Th L₃ HERFD spectra and RIXS maps of ThO₂, Th(NO₃)₄ • 5 H₂O and [Th₂(μ_2 -OH)₂Cl₂(OH)₂(H₂O)₁₀]Cl₂ were measured at ROBL

beamline (BM20) of ESRF in a HERFD setup (0.5 m radius) with one Si (8 8 0) stripped analyzer crystal (0.5 m bending radius). For the incident beam a Si (1 1 1) double crystal monochromator and a vertical slit of 100 μ m were used [1]. *Ab initio* calculations for Th L₃ XANES were performed using the FEFF 9.6 code with tabulated crystal structures.

RESULTS

FEFF9.6 calculations suggest a different crystal field splitting of the 6*d* states (ranging over few eV) for several thorium compounds (cf. Fig. 1). HERFD spectra show a broader absorption edge for ThO₂ compared to Th(NO₃)₄ in

agreement to the simulated spectra (sf. Fig. 2). Evaluation of the RIXS maps (cf. Fig 3) showed an increased absorption broadening for ThO₂ compared to $Th(NO_3)_4$ - 9.6 eV versus 5.8 eV respectively.

A surprising result was obtained during further evaluation of the RIXS maps (cf. Fig 3). A emission broadening of ThO₂ for compare to Th(NO₃)₄ of 6.4 eV to 5.0 eV respectively was

observed. The resonant emission depends on the 3d core states. Most probable explanation is a multiplet splitting of the excited states.

Additionally Th 4f XPS spectra show a shift of 1.4 eV to lower binding energy for ThO₂ compared to Th(NO₃)₄. The shake-up satellite for the leading edge in ThO₂ shows a much lower intensity than the same signal in Th(NO₃)₄.

XPS results indicate a covalent contribution to bond formation in ThO₂ [5], a covalent contribution could interact with one electron in the resonant excited state and explain the result obtained from investigation of RIXS maps. The possibility to use RIXS maps as a tool to investigate covalence will be an interesting field for future study.

REFERENCES

Kvashnina, K. O. et al. (2016) J. Synchrotron Rad 23, 836–841. [2] International Atomic Energy Agency (2005) Thorium fuel cycle. Potential benefits and challenges. International Atomic Energy Agency, Vienna. [3] Butorin, S. M. et al. (2016) Chem. Eur. J. 22, 9693–9698. [4] Butorin, S. M. et al. (2016) J. Phys. Chem. C 113, 8093–8097. [5] Butorin, S. M. et al. (2016) PNAS 22, 9693–9698. [6] Rehr, J. J. et al. (2010) Phys. Chem. Chem. Phys. 12, 5503–5513.