ESRF	Experiment title: Stability of ternary and quaternary oxynitride coatings by in-situ annealing and XRD / HAXPES combination	Experiment number: HC 3515
Beamline:	Date of experiment:	Date of report:
BM25B	from: 27 jun 2018 to: 03 jul 2018	
Shifts:	Local contact(s):	Received at ESRF:
18	Juan Rubio Zuazo (email: rubio@esrf.fr)	
Names and affiliations of applicants (* indicates experimentalists):		
Dr. Erik Lewin*, Kristina Johansson*		
Department of Chemistry – Ångström laboratory, Uppsala university, Sweden		
Dr. Andreas Lindblad*, Fredrik Johansson*		
Department of Physics and Astronomy, Uppsala university, Sweden		
Dr. Olivier Balmes*		
MAX IV laboratory, Lund university, Sweden		

Report:

During the allocated beamtime of 18 shifts, annealing experiments were performed in the experiment chamber of BM25B on a total of four thin film samples. Samples were characterised *in-vacuoo* after each annealing step by simultaneous measurements of both grazing incidence X-ray diffraction (GIXRD) and hard X-ray photoelectron spectroscopy (HAXPES), using a photon energy of 8524 eV ($\lambda = 1.455$ Å). Annealing experiments were conducted from temperatures of 350 to 875°C. The use of hard X-rays allowed us to probe the bulk of the thin film samples, without the need for Ar⁺ ion etching which is known to create artefacts on the studied samples.[1] Additionally some of the annealing experiments were followed by mass spectrometry (MS) to observe gaseous decomposition products.

During the beamtime, the decomposition of ternary Al-Ge-N thin films was primarily studied (two of four samples). These coatings contain a metastable solid solution phase based on wurzite AlN, w- $(Al_{1-x}Ge_x)N_y$, see previous work.[2] This metastable solid solution phase is expected to decompose by segregation of Ge, and the release of N₂:

w-(Al_{1-x}Ge_x)N_y
$$\rightarrow$$
 w-Al_{1-x}N_{y-x} + xGe + ^x/₂N₂ (equation 1)

This decomposition has previously been demonstrated by ion beam bombardment, showing the formation of metallic Ge.[1] In the present experiments we have been able to follow the decomposition in more detail and *in-situ* by annealing and the combination of HAXPES and XRD.

Preliminary results are shown in Fig 1 to 3. The decomposition product (Ge) is observed by X-ray diffractograms (Fig 1) which show the growth of a crystalline Ge-phase (peak at 2θ ~25.5°) as a result of annealing above 750°C. Also shown in Fig 1 are the corresponding HAXPES spectra of the Ge 2p core levels (Fig 2), showing a change in the chemical state of Ge, consistent with a partial decomposition of the wurzite (Al_{1-x}Ge_x)N_y phase according to equation 1. The mass spectrometry data (see example in Fig 3) also confirms the decomposition process, showing the release of N₂ from the sample upon annealing.

Figure 1 - X-ray diffractograms of AlGeN-sample after 10 min annealing at temperatures between 700 and 850° C.

Figure 2 – Ge 2p core levels of AlGeN-sample, observed with HAXPES after 10 min annealing at temperatures 700 and 875°C.

Figure 3 – Mass spectrometry data for N_2 , H_2O and H_2 taken during annealing of AlGeN-sample at 800°C, showing the release of nitrogen gas in the annealing step (and outgassing of the sample holder slightly later in time.

These results are now being complemented by ex-situ techniques at Uppsala university in preparation of a scientific paper. Additional analysis include scanning and transmission electron microscopy (SEM and TEM), as well as ex-situ X-ray photoelectron spectroscopy (XPS) with high spatial resolution to differentiate between different areas of the same sample. A manuscript is presently under preparation, and we expect a paper based on the HC3515 experiments to be published within a year of the beamtime.

References:

- E. Lewin, M. Parlinska, J. Patscheider, Nanocomposite Al-Ge-N thin films and their mechanical and optical properties, Journal of Materials Chemistry 22, 16761-16773 (2012)
 [doi:10.1039/C2JM32815A]
- [2] E. Lewin, J. Counsell, J. Patscheider, Spectral artefacts post sputter-etching and how to cope with them a case study of XPS on nitride-based coatings using monoatomic and cluster ion beams, Applied Surface Science, 442, 487 (2018) [doi:10.1016/j.apsusc.2018.02.191]