EUROPEAN SYNCHROTRON RADIATION FACILITY

INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

ESRF

Experiment Report Form

ESRF	Experiment title: XAS investigations to understand the aging behavior of Pd- and Rh- based TWC	Experiment number: CH-5396
Beamline: BM25A	Date of experiment: from: 04.06.2018 to: 09.06.2018	Date of report : 14.12.2019
Shifts: 18	Local contact(s): German Castro	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

Prof. Dr. Jan-dierk Grunwaldt¹, Dr. Maria Casapu¹, Dr. Guelperi Cavusoglu¹, *, Dr. Paolo Dolcet¹, *, Florian Maurer¹, *, Patrick Lott¹, *

¹Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Report:

Figure 1. Rh K near edge (XANES) spectra of the 1 wt. % Rh/Ce_xZr_yOz catalyst under stoichiometric threeway catalytic reaction condition, recorded in florescence mode The three-way catalysts (TWC) are the most known exhaust gas aftertreatment systems to reduce the emissions of CO, HCs and NOx of gasoline engine vehicles, when operated at conditions close to stoichiometric air-to fuel ratios. They contain Pt, Pd, and Rh as main components supported on γ -Al₂O₃ and Ce_xZr_yO_z, the later also acting as an oxygen buffer. However, the remaining challenges for TWCs are chemical and thermal deactivation. With this study intended to investigate the behaviour of Rh and Pd in model three-way catalysts during light-off/light-out tests and thermal aging. The tests were conducted in a capillary microreactor heated by a hot gas blower (Oxford). The recation products were continuously monitored with a FTIR and a MS. In general, the results revealed the evolution of Rh species as a function of temperature. However, for catalysts supported on Ce_xZr_yO_z we had significant difficulties with the quality of the obtained fluresence spectra (very low S/N ratio), as ilustrated in Fig.1. The obtained XANES results only show trends in oxidation state variation since we had to average a large

number of spectra in order to obtain a resonable outcome.