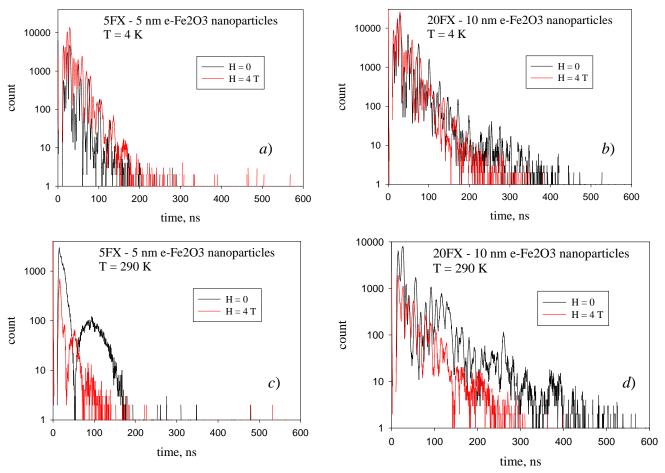
ESRF	Experiment title: Magnetic structure of ultra-small ε-Fe ₂ O ₃ nanoparticles	Experiment number: SC-4708
Beamline:	Date of experiment:	Date of report:
ID18	from: 30 April 2018 at 08:00 to: 02 May 2018 at 08:00	02 May 2018
Shifts:	Local contact(s):	Received at
9	Chumakov Aleksandr	ESRF:
		08 May 2018
Names and affiliations of applicants (* indicates experimentalists):		
Iurii Kniazev ¹ , Dmitrii Balaev ¹ , Natalia Kazak ¹ , Valerio Cerantola ²		

¹Kirensky Institute of Physics, Siberia Branch of Russian Academy of Science Akademgorodok 50/38, Krasnoyarsk, 660036 Russia ²European Synchrotron Radiation Facility, CS 40220, F-38043 GRENOBLE Cedex 9, France

Report:

Trivalent iron oxide ε -Fe₂O₃ attracts much interest because of its giant magnetic hardness (20 kOe), high temperature of transition into the magnetically ordered state (490 K) and the magnetoelectric effect [1-3]. This makes ε -Fe₂O₃ a promising functional material for data storage with high density recording and high-resolution probes in magnetic force microscopy. The origin of these unique properties, however, is still not understood, and the magnetic structure is not exactly known. The polymorph ε -Fe₂O₃ exists in the form of nano-particles up to 25–100 nm in size.


We focus our experiment on ε -Fe₂O₃ nanoparticles with average size of 5 nm (5FX) and 10 nm (20FX) which are well structurally and magnetically characterized. The purpose of this experiment was to found out the peculiaruty of the magnetic ordering for different iron sublattices.

Experimental details

The ε -Fe₂O₃ nanoparticles was sinthezied on silica gel by incipient wetness impregnation with the Fe(II) sulphate solutions [4]. This technique allowed obtaining for the first time the systems of ε -Fe₂O₃ particles with an average size of few nanometers without any other iron oxide polymorphic phases, which is much smaller than in the above-cited studies. To perform the nuclear forward scattering studies, a ε -Fe₂O₃ nanoparticles was powdered. The NFS time spectra from ⁵⁷Fe nuclei was recordered at 4, 80, 90, 100, 110, 120, 30, 140, 150 and 290 K with applying an external magnetic fields up to 4 T. Measurements were performed in the 4-bunch mode of operation.

Results

The time spectra of resonance NFS from the ⁵⁷Fe nuclei in 5FX and 20FX samples of ε -Fe₂O₃ nanoparticles at T=4 and 290 K are shown in Fig.1. There are several notable features: i) at the fixed temperature spectra of the 5FX and 20FX samples are differed due to the size effect and magnetic relaxation effect. ii) When the temperature rises, the quantum beats disappear, testifying to the disappearance of the hyperfine magnetic field at the ⁵⁷Fe nuclei. iii) The noticeable difference in the spectra recorded for H=0 T and 4 T is observed. The NFS spectra show the field-induced change of the period of quantum beats and consequently the field magnetic field at the iron nuclei. In order to inside into the magnetic structure of ε -Fe₂O₃ the detaled analysis of obtaned spectra is need. It will be done at nearest future.

Fig. 1. Time spectra of resonance NFS from the ⁵⁷Fe nuclei in 5FX (*a*, *c*) and 20FX (*b*, *d*) samples of ε -Fe₂O₃ nanoparticles at T=4 and 290 K. The dependence of the scattered radiation intensity on the time elapsed after the SR shot is represented on a logarithmic scale. The spectra are recorded with applying an external magnetic field.

- 1. M. Gich, C. Frontera, A. Roig, J. Fontcuberta, E. Molins, N. Bellido, Ch. Simon, and C. Fleta, Nanotechnology 17, 687 (2006).
- 2. E. Tronc, C. Chaneac, and J. P. Jolivet, J. Solid State Chem. 139(1), 93 (1998).
- 3. M. Gich, A. Roig, C. Frontera, E. Molins, J. Sort, M. Popovici, G. Chouteau, D. Martin y Marero, and J. Nogues, J. Appl. Phys. 98(4), 044307 (2005).
- Dubrovskiy, A.A., Balaev, D.A., Shaykhutdinov, K.A., Bayukov, O.A., Pletnev, O.N., Yakushkin, S.S., Bukhtiyarova, G.A., Martyanov, O.N.: Size effects in the magnetic properties of ε-Fe2O3 nanoparticles. J. Appl. Phys. 118, 213901 (2015).