ESRF	Experiment title: Structural studies of fullerenes at high pressures and low temperatures	Experiment number: <i>CH277</i>
Beamline: ID30	Date of experiment:from:19 June 97to:26 June 97	Date of report: 29/8/97
Shifts: 12	Local contact(s): D. Hausermann	Received at ESRF: 1 SEP. 1997

Names and affiliations of applicants (* indicates experimentalists):

K. Prassides," C.M. Brown,* K. Kordatos,* School of Chemistry, Physics and Environmental Science, University of Sussex, Falmer, Brighton BNI 9QJ, UK

- K. Tanigaki, NEC Fundamental Research Laboratories, Tsukuba 305, Japan
- Y. Iwasa, JAIST, Tatsunokuchi, Ishikawa 923-12, Japan

Report:

Fullerene superconductivity has been mostly dominated by the alkali intercalation compounds with stoichiometry A_3C_{60} . Much less is known about other fulleride superconductors, mainly because of the difficulties associated with the preparation of phase-pure bulk samples. Typical among these are the alkaline-earth superconductors, AE_xC_{60} (AE= Ba, Sr) which show superconductivity in the 4- 7 K range and in which the (LUMO+l) t_{1g} -derived band is now populated. The true stoichiometry of these superconducting phases has been controversial. Our recent work1 has been successful in isolating a number of these phases in pure form and thus unambiguously showing that both Ba4C_{60} and Sr4C_{60} are superconducting, while Ba6C_{60} and Sr6C_{60}, though metallic, are not.

As part of our present beam allocation on ID30, we performed angle dispressive X-ray diffraction measurements on a multiphase Ba_xC_{60} sample to pressures as high as 10 GPa. The data were of excellent quality and Rietveld refinements were routinely performed, even though the sample proved to comprise of there phases: Ba_6C_{60} , Ba_4C_{60} and Ba_3C_{60} . The refined fractions were 66.6%, 29.7% and 3.7%, respectively. While both Ba_6C_{60} and Ba_3C_{60} are cubic (a= 11.2016(7) Å and a= 11.363(4) Å, respectively, near

ambient pressure), **Ba4C60** adopts an orthorhombic structure (space group Immm, a=11.603(2) Å, b=11.288(2) Å, c=10.897(2) Å near ambient pressure). Fig. 1 shows the evolution of the volume of the unit cell for the three phases as a function of pressure and Fig. 2 shows the corresponding pressure dependence of the lattice constants for **Ba4C60**, displaying a remarkably anisotropic compressibility with the short c-axis showing little change with increasing pressure.

References

[1] Gogia, B. et al., in preparation; Brown, C. M. et al., in preparation.

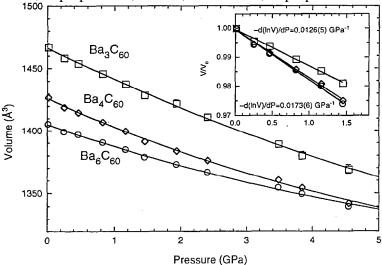


Fig. 1 Pressure evolution of the unit cell volume, V for Ba₆C₆₀, Ba₄C₆₀ and Ba₃C₆₀.

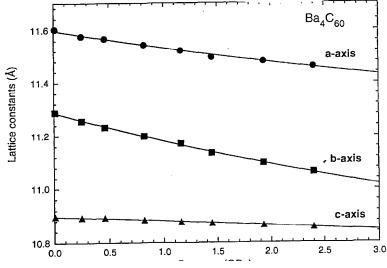


Fig. 2 Pressure evolution of the lattice constants of the orthorhombic unit cell of Ba_4C_{60} .