ESRF	Experiment title: X-Ray Structure Analysis of the EuS/Bi2Se3 Interface	Experiment number: HC-3820
Beamline:	Date of experiment:	Date of report:
	trom: 16.10.2018 to:23.10.2018	
Shifts:	Local contact(s):	Received at ESRF:
	Dr. J. Rubio-Zuazo	
Names and affiliations of applicants (* indicates experimentalists): (1) H. L. MEYERHEIM *(MPI f. Mikrostrukturphysik, D-06120 Halle (Germany)* (2) K. MOHSENI (MPI-Halle)*		

Report:

It was the aim of the experiment to carry out SXRD experiments to study the atomic structure of the EuS/Bi₂Se₃(0001) interface. The experiments could be carried out very successfully, and the data analysis still in progress. In detail: The (0001) surface of a

Fig.1 Comparison of intensities collected for clean and EuS covered $Bi_2Se_3(0001)$ along the (01L) CTR.

bulk single Bi₂Se₃ crystal was first prepared by sputtering and annealing as done previosuly [1,2]. The intensity distribution along several symmetry independent crystal truncation rods (CTRs) was collected for the pristine surface first.

In the next step, EuS was deposited in the ultra-thin film thickness range using a Knudsen cell loaded with EuS powder This takes about 2 hours at a temperature of 840°C. According to our in-house experiments (see STM image below) this leads to a film thickness of about 1 unit cell along the (111) direction of cubic EuS ($a_0=5.97$ Å)

Fig.2: LEED (E_{kin} =123eV) pattern after EuS deposition on Bi₂Se₃(0001). Only (1x1) spots related to the substrate are observed according to the good lattice matching of EuS to Bi₂Se₃ (4.22 vs. 4.14 Å).

which is equal to 10.34 Å. Fig. 1 shows for comparison the (01L) CTR collected for the clean and EuS covered Bi2Se3 (0001) surface, respectively. It can be seen that there is a substantial modification of the CTRs related to adsorption of EuS. LEED investigations (see Fig.2) has shown that there is only a (1x1) pattern present and no

Fig.3: (left) STM image (U=1 V, I=500 nA) taken from the in-house experiment closely related to the SXRD experiments showing a fully EuS covered $Bi_2Se_3(0001)$ surface, in which two substrate terraces are separated by a step. (Right side): The profile along the white line indicates an apparent maximum height of the EuS islands of about 1 nm related to one unit cell along the [111] direction of cubic EuS.

Until now, no completely satisfying fit of the CTR instensities is available which would allow a clear-cut statement of the film and interface structure. Preliminary analysis suggests however, that there is substantial atomic intermixing across the EuS/Bi₂Se₃ interface. This observation might be important to understand the recently observed unusual magnetic properties [3]. The data analysis is still in progress.

References:

[1] Sumalay Roy, H. L. Meyerheim, A. Ernst et al., Phys. Rev. Lett. 113, 116802 (2014)
[2] H. L. Meyerheim and C. Tusche, Physica Status Solidi RRL, 1800078 (2018)
[3] F. Katmis, V. Lauter, F. S. Noguera, et al., Nature 533, 513 (2016)

superstructure forms.