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Report: 
 
In these experiments, we studied the differences of 
the initial stages of platinum oxidation using 
SXRD. A comparative study was undertaken on 
Pt(100) and Pt(111) surfaces in HClO4 (a non-
adsorbing electrolyte) and H2SO4 (adsorbing). 
This was a continuation of earlier work on Pt(111) 
in HClO4[1-5]. For each of the two surfaces, we 
performed a series of cyclic voltammograms in 
both deaerated and oxygenated 0.1 M HClO4 and 
0.1 M H2SO4 electrolytes, while simultaneously 
measuring the intensity at an anti Bragg position. 
 
Figure 1 shows CVs of (B) Pt(111) and (C) 
Pt(100) at 20 mV/s. Platinum oxide formation 
through place exchange, indicated by the intensity 
drop at the peak label Oads, is initially fully reversible 
on Pt(111), whereas for Pt(100) it always results in 
irreversible surface restructuring. We also conducted 
potential step experiments in the oxidation region of both surfaces, returning to a lower hold potential between 
each step, to probe the potential at which surface restructuring becomes irreversible for each surface. 
 
Figure 2 shows the reversibility of the PE process, determined by potential step experiments, where the 
potential was changed for 20 s from a potential in the double layer range to a potential in the oxidation regime 
and then moved back to the lower potential. The relative changes in X-ray intensity indicate that irreversible 
platinum surface restructuring starts at higher potentials on Pt(111) than on Pt(100) by about 150 mV. 

Figure 1. CVs of Pt(100) and Pt(111) overlaid 
with x-ray intensity to show the place exchange 

 



  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
Full crystal truncation rod (CTR) data sets of the oxide structure between 0.98 V and 1.17 V RHE on Pt(100) 
were rapidly acquired with operando high-energy SXRD [6]. Figure 3 shows two of the eleven CTRs at 0.95 
V, 1.07 V, 1.12 V and 1.17 V (where the colored lines are the best fits and the grey lines are the data for a 
smooth surface at 0.95 V). The decrease in intensity at the higher potential CTRs corresponds to a surface in 
which up to 60% of the atoms were involved in the “place exchange” process. Analysis of the CTRs shows 
that the location of the oxidized Pt atoms on Pt(100) are very different from on Pt(111) and can no longer be 
considered a simple exchange of the Pt atom with an oxygen atom. 
 
Figure 4 shows the dependence of coverage (determined from the 
CTR analysis) on potential for both surfaces. Not only are the 
atom locations very different on Pt(100) and Pt(111), the 
oxidation initiates much earlier in the Pt(100) case, which agrees 
with the reversibility differences presented in Figure 2. We 
collaborated with Federico Calle-Vallejo (University of 
Barcelona), who carried out DFT calculations. These correlated 
well with the x-ray and electrochemical data and gave a detailed 
understanding of the differences of the initial stages of oxidation 
on both surfaces at an atomic level, and explained the differences 
in their stability. For Pt(100) a second and third atom extraction 
becomes more energetically favorable after the first extraction, 
which can lead to formation of a stripe structure, which is a not 
energetically possible on Pt(111). 
 
The dissolution of Pt catalysts is a key reason for degradation of 
activity in hydrogen-oxygen fuel cells. We collaborated with Serhiy 
Cherevko and his group (IEK-11, Forschungszentrum Jülich), who carried out parallel dissolution 
measurements on the Pt(100) and Pt(111) surfaces, and we were able to explain the differences in dissolution 
with the using the differences in the oxidation behaviour on the two surfaces. A joint paper presenting the X-
ray, DFT, and dissolution results is currently under review in Nature Catalysis [7]. 
     
The detailed differences between results in the two electrolytes with and without oxidation are under analysis 
and yet to be published. A publication is also under preparation on the detailed differences in the oxidation 
kinetics of Pt(100) and Pt(111) during potential step and sweep–hold experiments undertaken during this 
beamtime. 
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Figure 3. CTRs of Pt(100) at at 0.95 V, 1.07 V, 
1.12 V and 1.17 V showing that at higher 
potentials, more surface atoms undergo “place 

 

 

Figure 4. An illustration of how the 
coverage of place exchanged 
platinum atoms varies by potential 
and between the two surfaces. 

 

Figure 2. X-ray intensity for 
Pt(100) and Pt(111) at various 
potentials. 
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