

	Experiment title: In situ XAS study of Al ₂ O ₃ overcoated Pt-Ga/MgAl ₂ O ₄ catalysts for Alkane dehydrogenation	Experiment number: 26-01-1169
Beamline: BM26A	Date(s) of experiment: 05/12/2018 – 10/12/2018	Date of report: 24-1-2019
Shifts: 15	Local contact(s): Alessandro Longo	

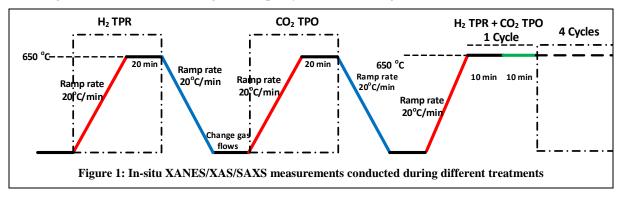
Names and affiliations of applicants:

Dr. POELMAN Hilde (+32 (0)9 331 17 22, Hilde.Poelman@UGent.be)

Prof. Dr. GALVITA Vladimir (Vladimir.Galvita@UGent.be)

Ir. Nadadur Veeraraghavan Srinath (N.V.Srinath@UGent.be)

Prof. dr. ir. MARIN Guy B. (Guy.Marin@UGent.be)


All from Ghent University, Laboratory for Chemical Technology, Technologiepark 125, B-9052 Ghent, Belgium

Summary

Pt dehydrogenation catalysts are typically promoted with a second metal such as Ga, to form a bimetallic nanoparticles by alloying, which show improved catalytic performance. Still, this bimetallic catalyst suffers from coke formation, sintering and side reactions. In order to minimize these effects several strategies are applied: 1. Adding some CO_2 in the feed, 2. Incorporating Ga in the support, 3. Overcoating the PtGa bimetallic nanoparticles with Al_2O_3 . This proposal is meant to explore the effect of these strategies. Catalysts were prepared by wet-incipient impregnation (WI) of Pt & Ga on $MgAl_2O_4$ support (HSA $-100m^2/g$) and WI of Pt on a $Mg(Ga)(Al)O_x$ hydrotalcite-like support. After reduction to induce alloy formation, these were overcoated with Al_2O_3 by atomic layer deposition (ALD).

Experimental conditions

The samples for all in-situ experiments was loaded in a quartz capillary allowing to record all combined measurements. The catalysts were subjected to separate H₂-TPR and CO₂-TPO treatments with a temperature program from room temperature till 873K. Subsequently, isothermal cycling treatments (873 K) were performed, with periodic CO₂ & H₂ gas switching, each cycle lasting 40 min (H₂ for 20 min and CO₂ for 20 min). Structural changes occurring during separate treatments were monitored by XAS and SAXS. While in-situ XAS gives information about the chemical state and short range order, the SAXS probes the particle size and inter-particle distance. For all samples, the experiments as in **Error! Reference source not found.** have been conducted at the Pt L_{III}-edge and for samples PtGa/MgAl₂O₄ and Al₂O₃/PtGa/MgAl₂O₄ equally at the Ga K-edge:

XANES was measured during all temperature program treatments and during the cycling measurements, while EXAFS was recorded close to room temperature after cool down. SAXS was measured in parallel

with both XANES and EXAFS. The XAS was recorded using a photodiode, while a Pilatus detector measured the scattered X-ray intensity. The SAXS and XAS measurements were synchronized such that SAXS was triggered to measure every time the energy was at 11.4keV while measuring at the Pt-edge.

Experiments performed and preliminary results

H_2 -TPR, CO_2 -TPO, H_2 -CO₂ cycling: $PtGa/MgAl_2O_4$ at the PtL_{III} edge, XANES

Figure 2 shows the XANES spectra at the Pt edge. All the spectra are the final ones obtained at the end of each treatment. There is a clear reduction during TPR and a small hint of increase in white line intensity after CO₂-TPO, which is an occurrence not expected for Pt catalysts when present without any promoters. This indicates that Ga plays a role for this CO₂-oxidation to take place. Maybe it is present on the surface of the Pt as an oxide and thus contributes to this signal.

H_2 -TPR, CO_2 -TPO, H_2 - CO_2 cycling: $PtGa/MgAl_2O_4$ at the PtL_{III} edge, EXAFS

Figure 3 shows the R-space signal of the sample measured at room temperature subsequent to every treatment. The reduction of the oxide is evident. Upon CO_2 -oxidation there are small changes in the first neighbour peaks and there is a slight change in the sample upon CO_2/H_2 cycling.

SAXS measurements during the treatments for PtGa/MgAl₂O₄

SAXS was measured in transmission for all the experiments that were performed in order to track the evolution of the particle size. Figure 4 shows the SAXS results after the respective treatments for the PtGa sample. The support contribution has been subtracted to obtain the contributions from the metals present. There are some changes evident, different intensity level and crossing of scattering curves, which will be modelled to get detailed results in terms of particle size and interparticle distance.

SAXS was measured for $MgAl_2O_4$, $Pt/MgAl_2O_4$, $Pt/Mg(Ga)(Al)O_4$ and $PtGa/MgAl_2O_4$, as well as $Al_2O_3/Pt/MgAl_2O_4$, $Al_2O_3/PtGa/MgAl_2O_4$ and $Al_2O_3/PtGa/Mg(Ga)(Al)O_4$. This was done so that the contribution from each component can be quantified by subtracting each of the other components as a background.

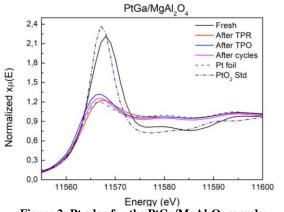


Figure 2: Pt edge for the PtGa/MgAl₂O₄ sample: XANES spectra after every treatment.

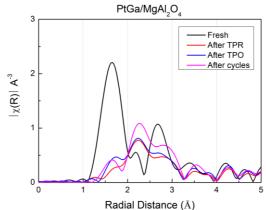


Figure 3: Pt edge for the PtGa/MgAl₂O₄ sample: R-space spectra after every treatment.

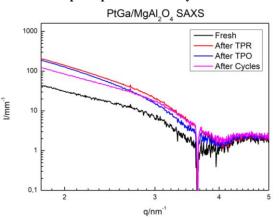


Figure 4: SAXS data for the PtGa/MgAl₂O₄ sample. Clear variations are observed upon each treatment.

Concluding

A nice set of XAS data has been collected on several PtGa/MgAl₂O₄ [Mg(Ga)(Al)O] samples both at the Pt and Ga edge under different conditions (reduction, CO₂-oxidation and CO₂/H₂ cycling). This will allow for several comparisons to be made, e.g. evolution of particle size, effect of Al₂O₃ overcoat on particle size, etc. Some differences already appear from a first comparison of XANES and R-space spectra. This will be further examined by modelling of these data. In addition, a first use of combined in situ XAS-SAXS was made and evaluated in collaboration with beam line scientist A. Longo.