

ESRF	Experiment title: Operando XAS study of composite Pt/Al ₂ O ₃ +Fe-ZSM-5 NH ₃ slip catalysts	Experiment number: CH-5741
Beamline:	Date of experiment:	Date of report:
BM23	from: 24/02/2021 to: 01/03/2021	
Shifts:	Local contact(s):	Received at ESRF:
15	Cesare Atzori	
Names and affiliations of applicants (* indicates experimentalists):		
Dr. Dmitry Doronkin ¹ *, Prof. Dr. Jan-Dierk Grunwaldt ^{1,2} , Vasyl Marchuk ² , Dr. Eduardo Melo Barbosa ² , Dr. Paolo Dolcet ² *		
¹ Institute for Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany		

²Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Report:

The proposal originally aimed at investigating Pt- and Pt/Fe-based catalysts for the selective oxidation of NH₃ to N₂ under *operando* conditions. Nonetheless, the safety limitations imposed due to the partial user operation during the Sars-CoV-2 pandemic prevented the usage of the concentrated NH₃ needed for the experiment. In agreement with the Safety group and the beamline scientists, we thus focused on Pt and PtPd based catalysts for CO and/or NO oxidation. In particular we were interested to investigate the impact of different noble metal preparation routes on the catalytic activity. The tests were conducted in a capillary microreactor heated by a hot gas blower (Oxford). Reactive gases were dosed with mass flow-controllers, using the dedicated gas dosing unit available at BM23. The reaction progress was monitored at the outlet of the reactor using a mass spectrometer (Pfeiffer Vacuum) and a NDIR instrument (ABB). The 2% NM/CeO₂ catalysts were analysed under model CO and NO oxidation reaction conditions, to a maximal temperature of 500°C. The effect of reductive pre-treatment was also assessed.

Preliminary results indicate a clear impact of the NPs synthesis method, given a similar particle size, on the catalytic and electronic behaviour of the noble metal species. In particular for the bimetallic catalysts a correlation with the alloying degree of the nanoparticles was observed. The obtained data are currently being analysed in detail at KIT and will be included in future publications.