REPORT

MA-4601 "Structural Investigation of Novel Ternary Hydrides - Near Room-temperature Superconductors"

Dmitrii Semenok, Anna Ivanova, Ivan Troyan

Research goals

Within this proposal, we planned to study the crystal structure of ternary superconducting hydrides: La-Y-H, Mg-Y-H, Ca-Y-H. We expected that the crystal structure of these ternary polyhydrides will be determined for the first time. We planned to confirm formation of cubic CaYH₁₂, LaYH₁₂ and Y_xMg_{1-x}H₆, as well as non-stoichiometric ternary hydrides, in accordance with the results of computer modelling.

Results

Diamond anvil cells (DACs) loaded by (Mg,Y)-H and (Ca,Y)-H samples were broken during laser heating or a few days later, before its sending to ESRF. Four DACs loaded by $La_xY_{(1-x)}$ -H turned to be more stable and crashed only after the one day of XRD measurements at the ID15B beamline. Four measured DACs (named M1, M2, SL1 and SL3) had the following parameters:

DAC	Pressure, GPa	Sample size, µm	Sample
M1	180	30	LaY/BH ₃ NH ₃
M2	180	32	La ₂ Y/BH ₃ NH ₃
SL1	180	29	La ₄ Y/BH ₃ NH ₃
SL3	170	29	Y ₄ La/BH ₃ NH ₃

The La-Y alloys for the loading of DACs were prepared by an arc melting (2000-2500 °C, 10 seconds) of La/Y pellets in Ar atmosphere at pressure of 6 bar. According to the results of scanning electron microscopy (SEM), X-ray diffraction and energy-dispersive analysis (EDX), the obtained alloys consisted of *hcp*-La₄Y (SL1), *hcp*-La₂Y (M2) and mixtures of La₂Y+Y₂La (M1) and La₂Y+Y₂La + Y (SL3).

Pulsed laser heating of La/Y micro samples, taken from obtained La/Y alloys and mixed with NH₃BH₃, was carried out at 1500-2000 K with duration of several microseconds. After the heating the La/Y particles expanded, became black, and the pressure in DACs, measured via both Raman signals of diamond and hydrogen, dropped to 180±2 GPa (M1, M2, SL1) and 170±2 GPa (SL3).

Figure 1. (Left) Le Bail refinement of the unit cell parameters of Fm-3m-(La,Y)H₁₀ sample in M2 DAC. (Right) LeBail refinement of the cell parameters of Fm-3m-(La,Y)H₁₀, Imm2-YH₇ and Cmcm-LaH₃ (M1 DAC).

Results of the synthesis were examined through powder X-ray diffraction of synchrotron radiation, wavelength of 0.4111 Å, at the ID15B ESRF beamline (Figure 1). In all 4 cells the main phase was Fm-3m-(La,Y)H₁₀ with a cell volume by 0.5-0.83 Å³ lower than the cell volume of Fm-3m-LaH₁₀ at 170-180 GPa, respectively. This corresponds to the sample composition of La₃YH₄₀ or La_{0.75}Y_{0.25}H₁₀, which is close to the loaded one (M2, SL1). The cleanest samples were in the DACs SL1 and M2, while in M1 and SL3 we have detected previously described impurities: pseudocubic *Imm2*-YH₇ (Figure 1, right chart) and, probably, *Cmcm*-LaH₃ (Figure 2).

Figure 2. (left) Le Bail refinement of the unit cell parameters of Fm-3m-(La,Y)H₁₀ sample in SL1. (Right) Le Bail refinement of the cell parameters of Fm-3m-(La,Y)H₁₀, Imm2-YH₇ and Cmcm-LaH₃ phases in SL3 DAC.

Experimental	lattice	parameters	and	unit	cell	volumes	of	$Fm\overline{3}m$ -(La,Y)H ₁₀	(Z = 4),	Imm2-YH7	(Z = 2),	and
Cmcm-LaH ₃ (Z = 4) a	are given bel	ow:									

	l	<i>Fm</i> 3 <i>m</i> −(La,	Y)H10					
Pressure, GPa	<i>a</i> , Å		$V, Å^3$					
180	5.038(1)		127.86	(2)				
180	5.026(1)		126.98	(2)				
180	5.031(1)		127.32	(1)				
170	5.071(1)		130.40	(1)				
Imm2-YH7								
Pressure, GPa	a, Å	b, Å	<i>c</i> , Å	<i>V</i> , Å ³				
166	3.29(4)	3.33(6)	4.68(7)	51.50				
170	3.303(1)	3.322(2)	4.672(2)	51.25(2)				
180	3.279(2)	3.305(2)	4.641(2)	50.30(1)				
Cmcm-LaH ₃								
Pressure, GPa	a, Å	b, Å	<i>c</i> , Å	V, Å ³				
180	2.791(4)	10.492(5)	2.657(3)	77.83(2)				
170	2.737(2)	10.507(3)	2.727(2)	78.44(3)				
	Pressure, GPa 180 180 180 170 Pressure, GPa 166 170 180 Pressure, GPa 180 170	Pressure, GPa a, Å 180 5.038(1) 180 5.026(1) 180 5.026(1) 180 5.031(1) 170 5.071(1) Pressure, GPa a, Å 166 3.29(4) 170 3.303(1) 180 3.279(2) Pressure, GPa a, Å 180 3.279(2) Pressure, GPa a, Å 180 2.791(4) 170 2.737(2)	Fm3m-(La,Pressure, GPa $a, Å$ 180 $5.038(1)$ 180 $5.026(1)$ 180 $5.031(1)$ 170 $5.071(1)$ 170 $5.071(1)$ Pressure, GPa $a, Å$ 166 $3.29(4)$ 3.303(1) $3.322(2)$ 180 $3.279(2)$ 3.305(2) $3.305(2)$ Cmcm-LatPressure, GPa $a, Å$ $b, Å$ $b, Å$ 170 $3.279(2)$ 180 $3.279(2)$ 180 $2.791(4)$ 10.492(5)170 $2.737(2)$ 10.507(3)	Fm3m-(La, Y)H10Pressure, GPa $a, Å$ $V, Å^3$ 180 $5.038(1)$ 127.86180 $5.026(1)$ 126.98180 $5.031(1)$ 127.32170 $5.071(1)$ 130.40Imm2-YH7Pressure, GPa $a, Å$ $b, Å$ $c, Å$ 166 $3.29(4)$ $3.33(6)$ $4.68(7)$ 170 $3.303(1)$ $3.322(2)$ $4.672(2)$ 180 $3.279(2)$ $3.305(2)$ $4.641(2)$ Pressure, GPa $a, Å$ $b, Å$ $c, Å$ 180 $2.791(4)$ $10.492(5)$ $2.657(3)$ 170 $2.737(2)$ $10.507(3)$ $2.727(2)$				

*Taken from previous investigation of Y-H system.

Conclusion: within this project, we were able to synthesize a ternary *fcc* lanthanum-yttrium superhydride (decahydride) La_3YH_{40} , in which about 25% of La atoms were replaced by Y atoms without changing the cubic structure of the hydrogen sublattice. The latter explains the high-temperature superconductivity observed for the synthesized samples.