ESRF	Experiment title: Anisotropic Dynamics of Colloidal Rods in Dense Suspensions	Experiment number: SC-5054
Beamline:	Date of experiment:	Date of report:
ID02	from: 4/11/2020 to: 7/11/2018	
Shifts:	Local contact(s):	Received at ESRF:
9	Thomas Zinn (email: thomas.zinn@esrf.fr)	
Names and af	filiations of applicants (* indicates experimentalists):	
	d. Arif Kamal, and P. Schurtenberger ysical Chemistry, Lund University, PO Box 124, 22100 Lund, Sweden	

Report:

In this experiment, we studied the structure and dynamics (at nearest neighbour length scale) of β -FeOOH colloidal rods in bulk employing SAXS and XPCS techniques. Rods of two different aspect ratios $\rho = 20$ and $\rho = 8$ were measured over a wide concentration range ($\varphi \sim 0.03$ to $\varphi \sim 0.23$). Although $\rho = 8$ worked out quite well, unfortunately, $\rho = 20$ did not work out as per expectation.

This was a challenging experiment, not only because of the ultra-small angle scattering set up and the opacity of the samples but also the experiments were performed remotely due to Covid-19 restrictions. Despite these difficulties excellent support from the beamline scientists helped us to measure at least one aspect ratio ($\rho = 8$) satisfactorily. Since the length scales of the particles with aspect ratio $\rho = 20$ were 250 nm × 12 nm, the XPCS set up in ID02 beamline was not suitable for them. We observed that at low ϕ , the system was too fast to be measured by the EIGER500K detector while at high ϕ , the system gets into a kinetically arrested state. Since this being a remote experiment, it was not possible to tune the concentration on the fly.

Results obtained from $\rho = 8$ system is described below. Fig.1 shows the structure and dynamics of $\rho = 8$ at $\varphi = 0.17$. The correlation functions have been fit with generalized KWW model (Fig. 1(a)) to extract the effective diffusion coefficient D(q) (Fig.1.(c)). D(q) shows a scaling behaviour with inverse structure factor (Fig.1(d)). This behaviour is known as de Gennes narrowing.

Fig. 2 represents the structure and dynamics of $\rho = 8$ for concentrations lying between $0.03 \le \varphi \le 0.17$ (different colour schemes correspond to different concentrations). We observe that as ϕ increases, the effective structure factor (*S*(*q*)) builds up (Fig. 2(a)). Further with increasing ϕ , the structure factor peak moves towards high q as expected, indicating the formation of more ordered structure. Fig. 2 (b) shows the variation of D(q) for all ϕ , which indicates that D(q) not only decreases with increase in ϕ , but exhibits de Gennes narrowing for

all ϕ . The variation of D(q) with ϕ (Fig. 2(c)) indicates that the system approaches a kinetic arrest at high concentration.

Beyond $\varphi > 0.17$, a nematic followed by a smectic phase is formed (data not shown) for which a different data reduction scheme involving azimuthal sector average is needed, which is being currently pursued.

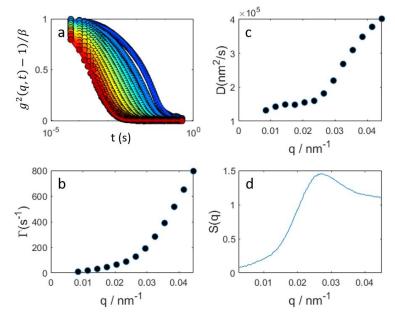


Figure 1: (a) Intensity auto correlation functions for different q values along with the fitting with generalized KWW model for $\rho=8$ at $\varphi=0.17$. (b) Inverse of correlation time, Γ , and (c) diffusion coefficient D(q) as a function of q. (d) structure factor S(q).

Figure 2: Variation of (a) structure factor S(q), (b) diffusion coefficients D(q) as a function of ϕ from ϕ =0.03 to ϕ =0.17. Different colour corresponds to different ϕ . (c)Variation of D(q) as a function of ϕ for three different q values.

Finally, we would like to thank Dr. Thomas Zinn and Dr. T. Narayanan for their excellent support.