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Report: 

 
The travel times of seismic waves through Earth’s interior provide one of the few direct constraints on the physical 

properties of mantle rocks. If carefully compared with experimental and computational measurements of the elastic 

properties of minerals this data may be interpreted in terms of mantle mineralogy, chemistry and temperature; 

information that is not otherwise directly attainable. Over several decades our knowledge of Earth’s seismic 
structure has developed from simple 1-D velocity models, constructed from stacked seismograms (Dziewonski and 

Anderson 1981), into full 3-D tomographic models of Earth’s velocity structure (Ritsema et al. 2011). In order to 

accurately interpret this vast array of high quality data it is absolutely vital there are high quality measurements of 

the elastic properties of the main Earth forming minerals. At the present time, using currently available 

mineralogical databases the seismic velocities of the transition zone appear inconsistent with a pyrolytic or 

piglogitic bulk composition (Irifune et al., 2008), suggesting either that the velocities of the consituent minerals 

need to be better constrained our our planet’s mantle composition differs from the current consensus. 

 

After olivine and its high-pressure polymorphs, garnet is the second most abundant mineral in peridotite and is 

modally dominant in subducted eclogitic oceanic crust throughout the upper mantle (Holland et al., 2013). Whilst 
low-pressure garnets (< 6 GPa) almost exclusively follow an A2+

3B3+
2Si3O12 stoichiometry, at greater depths the 

number of silicon cations in equilibrium garnets increases beyond 3 due to 2 substitution mechanisms: 

 

2B3+ = M2+ + Si4+ (1 - Mj substitution) 

B3+ + M2+ = X+ + Si4+ (2 - NaMj substitution) 

 

Both substitutions are pressure dependent (Akaogi et al., 1977, Dymshits et al., 2013) and result in final products of 

(1) MgSiO3 majorite or (2) Na2MgSi5O12 Na-majorite garnet. In natural systems Mj and NaMj components account 

for up to ~ 80 mol.% of garnet’s chemistry as reflected by the reported suite of ~ 220 majoritic garnets observed as 
inclusions within sub-lithospheric diamonds. Thus, Mj and NaMj components can contribute very significantly to 

the geophysical properties of garnet throughout the Earth’s upper mantle. However, there are currently very few 



 

published constraints (experimental and/or computational) on the seismic velocities of these two majoritic garnet 

endmembers. Thus, it is feasible that the properties of these garnets may explain the discrepancies between 

observed mantle velocities and those predicted using mineralogical models. 

 

Both of the high-pressure majoritic endmembers (Mj and NaMj) adopt a tetragonal crystal symmetry when 

recovered to ambient conditions (I41/a or I41/acd). However, there is published evidence based on microstructural 

observations of recovered Mj samples that MgSiO3 may undergo a second order tetragonal to cubic (Ia3̅d) 

transition at mantle conditions (~ 18 GPa, > 2000 K, Heinemann et al., 1997). There has been no previous study to 

investigate the NaMj endmember in this way. This experiment was the beginning of our project to study the 

crystallography and seismic velocities of Mj and NaMj at realistic mantle conditions. 

 

ES-982 was performed in June 2021, via remote access only, due to the travel restrictions associated with COVID-
19. Due to these circumstances the four experiments, which were constructed at UCL and shipped to the ESRF had 

to be loaded and interfaced with the beamline equipment by Dr Crichton, whom we are very grateful to for his 

assistance. This COVID-19 operation route signifcantly limited the finesse of instrument control, the ability to 

perform as many experiments as normally expected and the possibility of adapting the experimental protocol in 

response to observations from previous runs. Despite these difficulties we were successful in obtaining some 

results as detailed below (table 1). 

Table 1: summary of experimental runs performed in es-982 

experiment starting material Max PT conditions notes 

NaMj_1 NaMj garnet (10/4) 16 GPa, ~ 1000 K • new low background gaskets 

• good ultrasonic signal before heating 

• blow-out on initial heating 

NaMj_2 NaMj garnet (7/3) 17 GPa, 1600 K • made NaPx on initial heating (pressure loss) 

• pressurised to make NaMj 

• ultrasonics signal poor 

• observed cubic – tetragonal transition in NaMj on cooling 

• collected diffraction to 1 bar 

• ambient NaMj structure refined, tetragonal splitting significantly smaller than in 

Dymshits et al. (2013). More consitent with earlier studies. 

Mj_1 enstatite (10/4) 15 GPa, 1400 K • made clinoenstatite on initial heating (pressure loss) 

• compressed to try and reach akimotoite + ringwoodite field 

• the sample geometry changed to be unsuitable for ultrasonics 

Mj_2 enstatite (7/3) 18 GPa, 2200 K • synthesised akimotoite on intial heating 

• ultrasonics working 

• majorite-in at ~ 2000 K 

• annealing to achieve full sample transformation 

• massive blow-out before data collection could commence 

 

Within the four experimental runs, two suffered 

catastrophic blow-outs. One (NaMj_1) was due 

to the failure of the low-background gaskets 

upon heating. The second (Mj_2) was during 

sample annealing at > 2000 K. Mj_1 was also a 

failure as pressure loss upon initial heating for 

the majorite sample was far greater than 
expected, such that the conditions of the 

majorite stability field could not be reached by 

subsequent compression at high temperature.  

 

The most successful experiment was NaMj_2, 

during which NaMj was successfully 

synthesised and crystallogrpahically studied as a 

function of temperature at ~ 15 GPa, and during 

room temperature decompression. Data collected 

upon cooling from ~ 1600K to room temperature 
revealed a phase transition in NaMj indicated by 

the discontinuous broadening of the peaks width 

with decreasing temperature (fig 1). This is 

consistent with a second order phase transition 

Figure 1: evolution of the normalised peak width (fwhm relative to 300K) 

of the 640 and 642 peaks of the NaMj sample as the temperature was 

reduced from 1600 to 300K. The discontinuity, marked by the deshed 

vertical line, is consitent with a cubic-tetragonal phase transition. 



 

from cubic to tetragonal NaMj. Unfortunately, the ultraosonic signal, which would have confirmed this observation 

was poor quality throughout this experiment. After collecting data at a range of high PT conditions, diffraction data 

was collected throughout decompression, revealing the size of tetragonal splitting increases with decreasing 

pressure towards the ambient sample properties. Full Rietveld refinement of the sample at the end of 

decompression yields cell parameters for I41/acd NaMj of a = 11.40764(70) Å, c = 11.40036(71) Å and V = 

1483.58(13) Å3 (fig 2). This is an extremely high resolution diffraction pattern, revealing the a/c ratio at ambient 

conditions of 1.00064(1) and the unit cell volume is constrained to ± 0.009%. These results are quite inconsitent 

with those of Bindi et al. (2011), but are consitent with earlier reported volumes of Pacalo et al (1992) and Hazen et 
al (1994). All high PT data is of equally good quality and will provide an extremely good study of the PVT 

systematics of NaMj when combined with additional data. 

 

 

To continue and complete our study we will request further beamtime. Based on the experience here we will 

additionally study samples of MjxPy1-x solid solution, with x > 0.8. The reason for this decision is the the addition 

of small pyrope components expands the stability field of garnet to both lower pressure and temperature conditions 

(shrinking the fields of cpx and akimotoite stability that have to be transitted prior to data collection). Additionally, 

these compositions remain tetragonal at ambient conditions (Dymshits et al., 2013), unlike those with greater 

pyrope contents, thus still allowing the possible investigation of the cubic-tetragonal transitions. Additionally, we 

will only emply smaller 7/3 cells, which experience smaller pressure losses on initial heating, which will hopefully 
avoid back-transformation of starting materials. 
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