| <b>ESRF</b>          | <b>Experiment title:</b><br>Identifying structural contributions to the diffuse intensity<br>in antlerite | <b>Experiment</b><br><b>number</b> :<br>HC - 4945 |
|----------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Beamline:            | Date of experiment:                                                                                       | Date of report:                                   |
| ID28                 | from: 26 April 2022 to: 02 May 2022                                                                       |                                                   |
| <b>Shifts:</b><br>18 | Local contact(s):<br>KORSHUNOV Artem, BOSSAK Alexei                                                       | Received at ESRF:                                 |

Names and affiliations of applicants (\* indicates experimentalists):

PEETS Darren, Laboratory Technische Universitaet Dresden Inst. for Solid State and Materials Physics Haeckelstrasse 3 DE - 01069 DRESDEN

INOSOV Dmytro, Laboratory Technische Universitaet Dresden Inst. for Solid State and Materials Physics Haeckelstrasse 3 DE - 01069 DRESDEN

KULBAKOV ANTON, Laboratory Technische Universitaet Dresden Inst. for Solid State and Materials Physics Haeckelstrasse 3 DE - 01069 DRESDEN

## **Report:**

We measured diffuse diffraction for TiBi<sub>0.5</sub>Yb<sub>0.5</sub>Se<sub>2</sub>, TlBi<sub>0.9</sub>Sm<sub>0.1</sub>Se<sub>2</sub>, Bi<sub>4</sub>Rh<sub>4</sub>Cl<sub>6</sub>I<sub>7</sub>, NaYb<sub>0.8</sub>Lu<sub>0.2</sub>S<sub>2</sub>, NaYb<sub>0.1</sub>Lu<sub>0.9</sub>S<sub>2</sub>, NaYb<sub>0.4</sub>Lu<sub>0.6</sub>S<sub>2</sub> and AC-54E at different temperatures on ID28. Additionally, we measured the dispersion curve for Mn<sub>3</sub>Ge in (4 -2 1) and (0 0 3) gamma points at different temperatures. We used wavelength 0.6968 Å for measurements. Cryostream was used for temperature regulation. Temperature evolution of dispersion curves are shown in Fig. 1. Reciprocal maps for TiBi<sub>0.5</sub>Yb<sub>0.5</sub>Se<sub>2</sub>, TlBi<sub>0.9</sub>Sm<sub>0.1</sub>Se<sub>2</sub>, Bi<sub>4</sub>Rh<sub>4</sub>Cl<sub>6</sub>I<sub>7</sub>, NaYb<sub>0.8</sub>Lu<sub>0.2</sub>S<sub>2</sub>, NaYb<sub>0.1</sub>Lu<sub>0.9</sub>S<sub>2</sub>, NaYb<sub>0.4</sub>Lu<sub>0.6</sub>S<sub>2</sub> and AC-54E at different temperatures are not shown due to space reasons.

This project is funded by the German Research Foundation (DFG) through the Collaborative Research Center SFB 1143 in Dresden (project C03) and is part of the PhD work of A. Kulbakov.



Figure 1: Temperature evolution of dispersion curves