Background

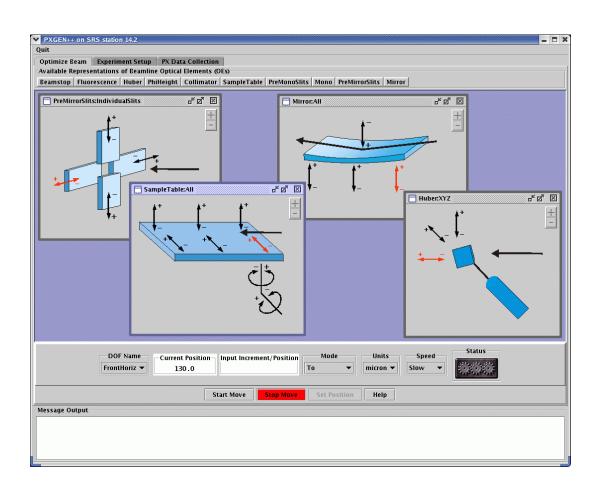
- Much existing data acquisition (e.g. PXGEN) old and developed independently, difficult to develop.
- SR Colleges and Synchrotron Radiation computing group (SRCG) formed.
- Greater collaboration between data acquisition developers in different scientific areas.
- Data acquisition hardware changing with increasing variety on different stations.
- Have to continue to maintain and develop existing software whilst incrementally developing better solution.

SRCG Objectives

- Increased cross college collaboration.
- New software to be developed through the use of more shared code, a common framework and standards.
- Easier to develop solutions and cope with changes, plug and play construction.
- Scripting language to facilitate easy configuration of experiments, based on Python.
- Distributed solution to cope with multiple hosts where required.
- Deployable to DIAMOND.

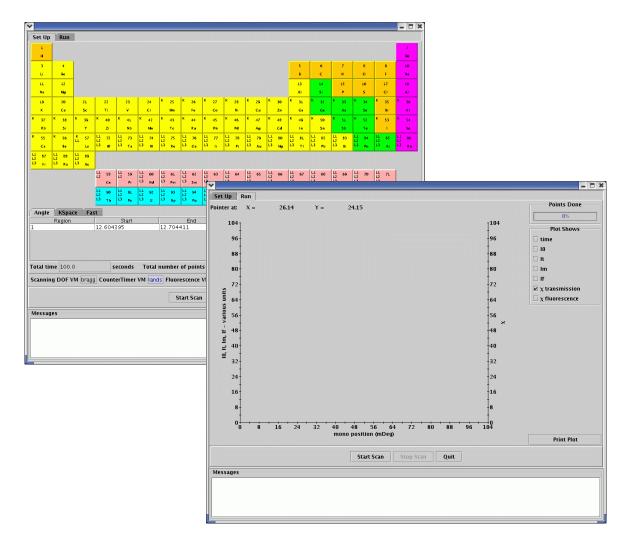
PX Objectives

- Replacement for PXGEN offering greater functionality.
- Uniform interface across stations, detectors, cameras etc.
- Simple GUIs that make set up and data collection easy.
- Automation wherever possible.
- Link data acquisition and processing.
- Flexibility to cope with future changes.
- Remote monitoring and control.


GDA – Generic Data Acquisition

- Object-oriented "plug and play" toolkit easier to maintain and create configurable software systems.
- Common and technique specific classes part of the same overall package, GDA.
- Core object oriented development, Java, flexible and transportable.
- Objects to represent real beam line hardware e.g. detectors, cameras, sample changers, tables, mirrors etc.
- Use interfaces to give plug and play.
- Configuration of objects via XML files or database.
- Underlying levels can be in any language, interfaced by GDA classes.
- Use scripting for flexible control.
- Provide common 'look and feel'.
- Allow a variety of network protocols to enable distribution (e.g. CORBA, sockets, SOAP).

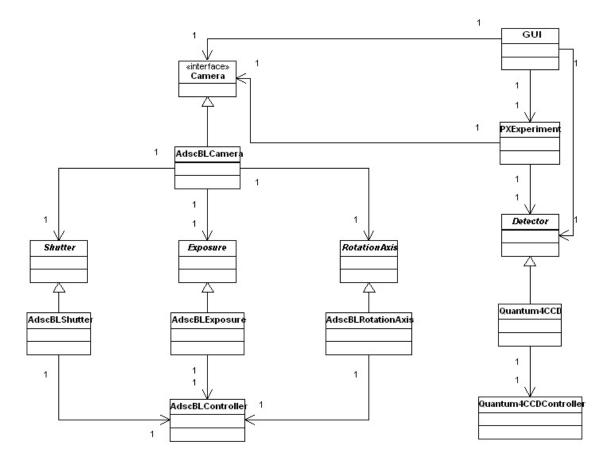
PXGEN++ so far


- GUI has tabbed 'look and feel'.
- Uses common GDA elements e.g. beam optimisation, XAFS.
- PX specific classes built as part of, and utilising other components from GDA. Likely to be refactored to be partly or wholly general.
- Basic functions for experiment set up and single wavelength data collection developed.
- Use of Rigaku sample changer included.
 - Standard Rigaku loop centring.
- Image display started but presently done via adxv.

Align beamline

- Manually align beamline for data collection.
- OEMove provides a standard tool to allow the control and set up of Optical Elements.
- Easily configurable for different stations.
- All OEs implement a standard interface.
- Configuration loaded at runtime.
- One tool meets needs of many projects.
- GDA standard.

Xafs


- Standard absorption edge scan interface and control.
- Will support multiple modes, Angle, KSpace and Fast.
- GUI completely detached from control.
- Scans done via scripting language.
- GDA standard.

Data collection

imize Bea a Collectio	entranet entreters.	nent Setup	PX Data Co	llection Automatic Data (
ata Collec	tion Setup	Sample Char	nger Setup	Detector Specific Setup	Image Display
ata directo	ry /home/:	shk/			
efix filena	me testfile_				
avelength					
am X	93.4		Beam Y	93.6	
nage Disp	ay 🖲 On	⊖ Off			
umber of	normal 🔻	Experiment	ts 3 🔻		
Phi Start 0	Increment 1.0	Images 2	Time 2.0	S-D dist 1st Image 360.0 1	
0	1.0	2	2.0	360.0 1	
0	1.0	2	2.0	360.0 1	
					Imono Dienlou
					image Display
					Image Display Under Development
					Linder Development
					Onder Development
s	tart			Abort	
edback					
older	1		Sample	3	
i	90.0		S-D dis	tance 360	
peration	read	V			
\mathbf{X}	A-I Progr	ess to End			
	Apr 2	9, 2004 14:2	7		
6300 Out					
sage Outp	ut				

- Standard data collection software on 9.6 and 14.2.
- Same GUI independent of detector in use.
- Can use Q4, MAR180 & MAR345 detectors.
- Can use standard adsc control daemons or MAR control software.
- Rigaku sample changer included.
- PX specific.

PX Data Collection

Scripting

- GDA using Jython for ease of access to Java objects.
- JClam scripts on top of Jython. Easier general purpose scanning and backward compatibility.
 - pos LeftSlit 2.0 RightSlit 2.0
 - scan Slit 1 1 5 qcr 1
- More natural language? Jython add on.
 - open shutter
 - move detector to 200 mm
 - collect dataset

PXGEN++ future development

Ever increasing list of "general" requirements

- Scripting for PX data collection control.
- Integration of XAFS for monochromator calibration.
- MAD data collection protocol(s).
- XAFS for MAD wavelength selection.
- Manual crystal alignment.
- Other detectors e.g. MAR CCDs.
- Other sample changers e.g. MAR DTB.
- General scanning interface.
- Development of diffraction image display.
- Camera image (crystal) display.

PXGEN++ Automation

• Beam Alignment

- Collimator to beam, Slits, Mirror/Monochromator focussing.

- Sample rather than loop alignment.
- Crystal screening (DNA collaboration).
- Analysis of data integration (DNA collaboration).
- Automatic logging of data collection from DNA/PXGEN++ (PXWEB/database server- collaboration).
- BIOXHIT post Automation of Protein Crystallography beamlines (beamline alignment, sample handling etc).