Grainspotter: overview, indexing unknown polycrystalline compounds

Søren Schmidt

Risø DTU National Laboratory for Sustainable Energy

Introduction

Irradiated crystallites

Structural Complexity

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Indexing polycrystalline compound with known crystallography (extracting orientations)

- Bravias Lattice and Unit cell parameters are known a priori from, typically,
 - Powders, radial spectra (Powder Indexing Programs)
 - Single crystal or few crystallites (single crystal indexing program)

Indexing with known crystallography: Identifying copies of the set of theoretical reflections in the polycrystalline dataset.

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Treatment of data

Indexing unknown compounds TotalCryst workshop 2009, ESRF

GrainSpotter, overview

Indexing unknown compounds TotalCryst workshop 2009, ESRF

DTU

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Searching for all orientations in the local Rodrigues space

Indexing unknown compounds TotalCryst workshop 2009, ESRF

G-vector selection, Lookup table

Each hkl family has a lookup table of 64 by 64 by 64 entries.

Only the entries near the surface of the sphere are filled with labels linking back to the g-vector list.

Based on the conditions each g-vector is stored in a larger region on the surface of the sphere.

Advantage: Matrix-vector integer multiplication points directly to the right location in the LUT.

Secondary search, integration, one pass

One table entry per g-vector

Finding real vertices. Keeping vertices with hits larger than user specified minimum

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Fitting orientation and position

$$\chi^2(\overline{x}_0) = \sum_i \left[|\overline{\Delta x_i}|^2 - \left(\overline{L}_i \cdot \overline{\Delta x_i}\right)^2
ight],$$

where $\overline{\Delta x_i} = \overline{x}_{l_{rot},i} - \overline{x}_0$ is the difference vector to the diffraction spot $\overline{x}_{l_{rot},i}$ in the sample reference system, i.e. $\overline{x}_{rot,i} = \overline{x}_{l,i}\Gamma_i^{-1}$, and the direction of the ray, \overline{L}_i , is given by Eq(6). More specifically,

$$\bar{x}_0 = S^{-1}\bar{b},\tag{12}$$

where

$$S_{pq} = \sum_{i} \left[\overline{L}_{p,i} \overline{L}_{q,i} - \delta_{pq} \right], \ \overline{b} = \sum_{i} \left[\overline{L}_{i} \left(\overline{L}_{i} \cdot \overline{x}_{l_{rot},i} \right) - \overline{x}_{l_{rot},i} \right].$$

Likewise, the orientation \bar{r}_0 is fitted by substituting $\bar{x}_{l_{rot},i}$ with the origin of the geodesics, \bar{r}_o^g , and \bar{L}_i with the direction of the geodesic, \bar{r}_s^g ,

Indexing unknown compounds TotalCryst workshop 2009, ESRF 2/4/2009

(11)

Stop when stable solution is found or if number of measurements goes below a user specified minimum

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Outlier removal

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Partial symmetry analysis

Indexing unknown compounds TotalCryst workshop 2009, ESRF

When calculating U from:

 $t1 \rightarrow h1$ and $t2 \rightarrow h2$

is this the right orientation giving the highest completeness?

Generally not, since we sometimes have multiple solutions on miller indices for h1 and h2 with same internal angle.

 $U_{1} = MT_{1}$ $U_2 = MT_2$

Theoretical g-vector pairs forming T1 and T2 have **same internal angels** (and come from the same hkl families): $\exists i: T_1 = T_2 E_i$ Not a pseudo twin

 $\forall i: T_1 \neq T_2 E_i$ Pseudo twin

 $U = MT_1$ then all $\hat{U} = UT_1^{-1}T_{2i}$, $\forall i: T_1 \neq T_2E_i = T_{2i}$ must be tested

Risø DTU, Technical University of Denmark 15

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Pseudotwins, example, FCC

First 8 hkl-families

Pseudotwins, example, FCC, r=0

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Pseudotwins, FCC, example r.0

Ideally N^2N_{sym} occurrences in orientation space + pseudo twins

Indexing unknown, pseudo data

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Trying 2000 random (mis)-orientations

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Lattice matches

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Additional noise filtering

Keeping the solutions with most points, however still noisy points occur.

Combine solutions:

Two approaches

A) All combinations of (h1->t1, h2->t2) – computationally heavy

Pseudo data, fcc, 100 grains, Approx 12000 gvectors

Two approaches

26

B) Yet again: Using geodesics in orientations space

$$\overline{g}_i = U\overline{h}_i \qquad l_i(t) = \frac{\overline{g}_i \times \overline{h}_i}{1 + \overline{g}_i \cdot \overline{h}_i} + t \frac{\overline{g}_i + \overline{h}_i}{1 + \overline{g}_i \cdot \overline{h}_i}$$

Two approaches

Again match lattice against lattice

Keep track of high frequency lattice points

Example, real data

Few grains

28 **Risø DTU, Technical University of Denmark**

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Distribution of d-spacings

d-spacing ranges used in the search

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Solution with most points

Dirax: a=8.643 b=10.630 c=31.378 =90.01 =90.24 =90.14

Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96

Compound: (bbcp) 2-benzyl-5-benzylidene-cyclopentanone Jav Davaasambuu et al 2005 J. Phys. D: Appl. Phys. 38 A204-A207.

Orthorhombic, Pbca, Sp gr. 61

12 grains in data

30 **Risø DTU, Technical University of Denmark**

Indexing unknown compounds TotalCryst workshop 2009, ESRF

Next

- Noise filtering: Use integrated intensities from diffraction spots
- Simultaneous identification of multiple phases
- Also, index_unknown.py (ImageD11) on lattice candidates instead of Dirax

Acknowledgement

- J. Wright, H.O. Sørensen, G. Vaughan, C. Gundlach,
 - S. Techert, J. Davaasambuu

www.totalcryst.dk

Indexing unknown compounds TotalCryst workshop 2009, ESRF