# Grainspotter: overview, indexing unknown polycrystalline compounds 

Søren Schmidt

Risø DTU
National Laboratory for Sustainable Energy

## Introduction

## Irradiated crystallites



Structural Complexity

## Indexing polycrystalline compound with known crystallography (extracting orientations)

- Bravias Lattice and Unit cell parameters are known a priori from, typically,
- Powders, radial spectra (Powder Indexing Programs)
- Single crystal or few crystallites (single crystal indexing program)

Indexing with known crystallography: Identifying copies of the set of theoretical reflections in the polycrystalline dataset.


## Treatment of data



Reciprocal space
(g-vectors)
ImageD11 (incl. indexing)

Structural solution, Refinement


GrainSpotter

## GrainSpotter, overview



## Rodrigues space

$$
\bar{g}_{i}=U \bar{h}_{i} \quad l_{i}(t)=\frac{\bar{g}_{i} \times \bar{h}_{i}}{1+\bar{g}_{i} \cdot \bar{h}_{i}}+\frac{\bar{g}_{i}+\bar{h}_{i}}{1+\bar{t}_{i} \cdot \bar{h}_{i}}
$$



Rodrigues space


Limitation in orientation:
Rodrigues space


## Searching for all orientations in the local Rodrigues space

Sampling randomly in full orientation space


## G-vector selection, Lookup table

Each hkl family has a lookup table of 64 by 64 by 64 entries.
 Only the entries near the surface of the sphere are filled with labels linking back to the g-vector list.

Based on the conditions each g-vector is stored in a larger region on the surface of the sphere.


Advantage: Matrix-vector integer multiplication points directly to the right location in the LUT.

## Primary search, mask, one pass



## Secondary search, integration, one pass



## Fitting orientation and position

$$
\begin{equation*}
\chi^{2}\left(\bar{x}_{0}\right)=\sum_{i}\left[\left|\overline{\Delta x_{i}}\right|^{2}-\left(\overline{L_{i}} \cdot \overline{\Delta x_{i}}\right)^{2}\right], \tag{11}
\end{equation*}
$$

where $\Delta x_{i}=\bar{x}_{t r e}, i-\bar{x}_{0}$ is the difference vector to the diffraction spot $\bar{x}_{l o x}, i$ in the sample reference system, i.e. $\bar{x}_{\text {rot }, i}=\bar{x}_{l, i} \Gamma_{i}^{-1}$, and the direction of the ray, $\bar{L}_{i}$, is given by $\mathrm{Eq}(6)$. More specifically,

$$
\begin{equation*}
\bar{x}_{0}=S^{-1} \bar{b}, \tag{12}
\end{equation*}
$$

where

$$
S_{p q}=\sum_{i}\left[\bar{L}_{p, i} \bar{L}_{q, i}-\delta_{p q}\right], \bar{b}=\sum_{i}\left[\bar{L}_{i}\left(\bar{L}_{i} \cdot \bar{x}_{l o t, i}\right)-\bar{x}_{l o t i}\right] .
$$

Likewise, the orientation $\bar{r}_{0}$ is fitted by
substituting $\bar{x}_{l o c}, i$ with the origin of the geodesics, $\bar{r}_{o}^{g}$, and $L_{i}$ with the direction of the geodesic, $\vec{r}_{s}^{g}$,


## Fitting



Stop when stable solution is found or if number of measurements goes below a user specified minimum

## Outlier removal

$$
\begin{aligned}
& \qquad f_{i}=\frac{\chi_{i}^{2}}{\psi_{\max }^{2}} \frac{\chi_{i}^{2} N}{\chi^{2}} \\
& \qquad f_{i}>f_{\text {cutoff }} \quad: \text { Discarded }
\end{aligned}
$$



## Partial symmetry analysis



When calculating $U$ from:

$$
\mathrm{t} 1 \rightarrow \mathrm{~h} 1 \text { and } \mathrm{t} 2 \rightarrow \mathrm{~h} 2
$$

$$
\begin{aligned}
& U_{1}=M T_{1} \\
& U_{2}=M T_{2}
\end{aligned}
$$

is this the right orientation giving the highest completeness?

Generally not, since we sometimes have multiple solutions on miller indices for h1 and h2 with same internal angle.
$U=M T_{1}$ then all $\hat{U}=U T_{1}^{-1} T_{2 i}, \quad \forall i: T_{1} \neq T_{2} E_{i}=T_{2 i} \quad$ must be tested

## Pseudotwins, example, FCC

First 8 hkl-families


Red: 112, true
Blue: 34
Green: 24
Cyan: 16
Magenta: 10
Yellow: 8
Black: 2, 4 and 6

## Pseudotwins, example, FCC, r=0

$r_{\text {pseudo }}=\frac{p}{q}, \mathrm{p}$ and q integers


Red: 112, true Blue: 34
Green: 24
Cyan: 16
Magenta: 10
Yellow: 8
Black: 2, 4 and 6

## Pseudotwins, FCC, example r 0



Red: 112, true Blue: 34
Green: 24
Cyan: 16
Magenta: 10
Yellow: 8
Black: 2, 4 and 6

## Indexing compounds with unknown crystallography



Ideally $\mathrm{N}^{2} \mathrm{~N}_{\text {sym }}$ occurrences in orientation space + pseudo twins

## Indexing unknown, pseudo data



## Trying 2000 random (mis)-orientations




## Lattice matches



## Additional noise filtering

Keeping the solutions with most points, however still noisy points occur.

Combine solutions:


## Two approaches

A) All combinations of (h1->t1, h2->t2) - computationally heavy


Pseudo data, fcc, 100 grains, Approx 12000 gvectors

## Two approaches

B) Yet again: Using geodesics in orientations space

$$
\bar{g}_{i}=U \bar{h}_{i} \quad l_{i}(t)=\frac{\bar{g}_{i} \times \bar{h}_{i}}{1+\bar{g}_{i} \cdot \bar{h}_{i}}+t \frac{\bar{g}_{i}+\bar{h}_{i}}{1+\bar{g}_{i} \cdot \bar{h}_{i}}
$$



Rodrigues space

## Two approaches



## Example, real data



Few grains

## Distribution of d-spacings


d-spacing ranges used in the search

## Solution with most points



Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96
Compound: (bbcp) 2-benzyl-5-benzylidene-cyclopentanone Jav Davaasambuu et al 2005 J. Phys. D: Appl. Phys. 38 A204-A207.

Orthorhombic, Pbca, Sp gr. 61
12 grains in data

## Next

- Noise filtering: Use integrated intensities from diffraction spots
- Simultaneous identification of multiple phases
- Also, index_unknown.py (ImageD11) on lattice candidates instead of Dirax


## Acknowledgement

- J. Wright, H.O. Sørensen, G. Vaughan, C. Gundlach, S. Techert, J. Davaasambuu

\| Risø DTU
ㅇ
(a)


11 H
www.totalcryst.dk

