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Peak overlap 
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Intensity integration/separation
• Having known reflection profiles can help extracting the individual intensities 

– A simple fit can made of the intensities of the overlapping peak profiles

• Other integration programs do this, by “learning” the peak profile in different 
parts of detector space1 

– This is not a viable route with a high number of overlaps

1Kabsch, W. (1988) J. Appl. Cryst. 21, 916.
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Peak profiles and shapes
A convolution of several factors

• Some are related to the crystalline grains
– Morphology
– Orientation distribution

• Others are instrumental in nature
– beam divergence
– beam profile
– detector point spread
– goniometer geometry

Topo-tomography (W. Ludwig)
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Peak profiles and shapes
Grain properties 

– Morphology
– Orientation distribution

• If the grain size is smaller than the detector pixel size the crystal 
morphology does not contribute to the peak profile

• Hence the peak profile is determined mainly by the orientation spread of 
the grain

• The aim will then be calculate the grain orientation distribution from a few 
non-overlapping reflections.
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Orientation Distribution Function (ODF)
The ODF will be discretized in Rodrigues space

r = tan(θ /2) n
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Properties:

Perfect single­crystal => single point in Ω

Mosaic crystal  => a distribution function in Ω  

Pro:  Euclidian at small angles φ

Con:  For many space groups Ω  extents to infinity
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y = y0+ dy,  

dy is parameterized in

u,v coordinates

From data to the ODF
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Poulsen, H.F. (2005) MST, 21, 1397 
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y0

Poulsen, H.F. (2005) MST, 21, 1397 

“reciprocal” sphere ω ,η

Relation between ODF and “data” is:       dy = 2(r × y0) 

From data to the ODF
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Data integration route
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Projection method

• ODF voxels can be listed in 1D array, x

• The transformed intensities in the uv map is listed as 1D array, b 
• A describes the geometrical relation between uv-maps (b) and ODF (x)

Ax = b

• Fast voxel traversal algorithm (3D-DDA) – Amanatides in Eurographics '87,(Elsevier)

uv -pixel (b)

ODF voxel grid (x)
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Solve:  Ax = b

We want to solve Ax = b, but A is ill-conditioned and b is noisy,
hence

Ax = Ax
exact

 + e,      e being noise

It follows that
x

naive 
= A-1b = x

exact
 + A-1e ,    where     || A-1e|| >> |x

exact
|

Not very useful results will be obtained

Aim: Find a solution for which ||Ax – b|| is small (good fit) and x ~ x
exact

 

•To be solved by iterative methods as ART, CGLS etc.
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 Algebraic Reconstruction Technique

x−x
bi−ai

T x

∥a∥2
2

ai , i=1,.... , m

One approach to compute an approximate soulution  to Ax = b
ART does (by projections on hyperplanes):

During the initial iterations the convergence is fast
Later the convergence slows down
Good method if only few iterations can be afforded

Initial guess

A-1b
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CGLS algorithm

||Ax-b||2
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Iteration       1             4           7             10            13         16           19

preconditioned reconstructions

Since the border pixels generally are transversed by less rays 
than more central  this can lead to ripples at the border

By “constraining” the solution to go towards zero at the border 
these types of effects can be suppressed 

CGLS

PCGLS
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Preconditioning

• Further smoothing and assert zero boundary conditions
• Can be done by introducing a derivative operator D

Variable transformation of Ax=b
ξ  = Dx

minimize 
minx || (AD-1)ξ  – b ||2 

back transform
x = D-1ξ
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Investigate quality of reconstruction 
methods by simulation
• 5 reconstruction methods

– ART
– CGLS
– P1ART

– P1CGLS

– P2CGLS

• Alu grain ODF simulated by 3 Gaussians

• uv maps calculated out sinθ /λ  =  0.45 Å-1 

(29 reflections)

• Added Poissonian noise (6 SNR levels)

• 3 to 18 reflections used in reconstruction – 

randomly chosen

• All calculations repeated 10 times
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Simulations with ”inverse crime”
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Error histories of the iterative methods 

Iteration           1                4                  7                10                13              16               19
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Stopping Criterion:  

Stop the iterations when x(k) captures the desired information

How do we measure this?

• No way to measure if x(k) is close to x
exact

• Fit to noise level: ||A  x
exact

 ||
2
 ~ ||e||

2
 

• Information criterion: residual behaves statistically like e

Fit to noise level can sensitive to the estimate of  ||e||
2
 

If  e is white noise, then the normalized cumulative periodogram can 

be used to measure the ”white-ness” of the residual. 
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NCP = Normalized Cum. Periodogram

Dominated by
low frequencies

Dominated by
high frequencies

Quite white

The NCP measures the frequency content in a signal s.
Let the power spectrum of s (of length n) be given by p = |dft(s)|2

then the NCP is a plot of the vector c with elements

The closer c is to a straight line, the ”whiter” the signal s 

cl=

∑
i−1

l

pi

∑
i−1

q

pi

, i=1,2,. .... , q , q=[n /2 ]

Examples
with n = 256
and q = 128
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Use of the NCP stopping criteria

• For each uv-map (i = 1,2,3,....,N
uv

)

– For each iteration step k
• Compute the NCP

– Return the iteration step giving the optimal NCP
• Choose the iteration step k as

k
opt

 = median (k
1
,k

2
,k

3
,....,k

Nuv
)

The median was choosen to minize the influence of outlier uv-maps
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Quality of reconstructed ODF as a func. of 
projections
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Extremely noissy data

Slice through ODF
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• For a test sample we have used pre-strained Al 1050 samples

• Mean grain size 75 microns

• Strained to 2, 4, 6, 8 and 10 %

• Beam energy 25.514 keV

• Beam vertical 100 microns

Tensile 
direction

400 
microns

Strained Al samples
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Al sample - strain 6% 

uv-map

ODF
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Compare experimental and reconstructed 
maps
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Al sample - strain 6% 

Winther et al. Acta Mater. (2004),  51, 2863
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HLU1 kindly provided by H. Lundbeck A/S

N

Cl

N

Narrow (a few microns in height) and wide 
beam (>1 mm) to optimize flux for small 
crystals

High energy 46.837 keV (λ  = 0.2647 Å)

Frelon4m detector (2k by 2k) 

Mounted samples on cryoloops

Temperature ~122 K 

Omega rotation 180 degress in 0.3 deg. 
steps

Test on an organic compound
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Orientation spread
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HLU1  - Not quite single crystal
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Indexing

First grain indexed

(fft_index.py, J. Wright)

● Unit cell
● a =  9.076 Å
● b =  6.050 Å
● c = 43.922 Å

● Space gr. ?
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Comparison of exp. and recontructed uv-
maps

Reflections on detector uv-maps

Reconstructed 
maps

•s
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Integration by fitting the profile
• Reflection profiles calculated from ODF + point-spread function

• calculate CMS and maximum for both reflection box and profile
• compare their positions

•If far apart make initial fit a center
•If not move profile grid to have same CMS as peak for intial fit

• Calculate residual moving profile 1 grid point in all directions (26) 
•if not move center to position with lowest residual and do another round
•If residuals all higher – stay

•Decrease steps to ¼ grid points and do the same analysis until minimum residual 
found
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Integration by fitting the profile

3084  Unique reflections, of which   2886  observed (5982  Reflections read)

 R
int

 =  0.1055

No structure yet ..... 
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Summery
• Developed a method to reconstruct orientation-distribution functions of 

single grains.
• Applied this in a procedure for extraction of integrated intensities.

   The python program Fabric (not in GUI yet) is made to  reconstruct 
ODF's and do intensity integration. 
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