Measuring the elastic strain of individual grains in a polycrystalline material

Jette Oddershede, Søren Schmidt, Henning Friis Poulsen Risø DTU

and Walter Reimers TU Berlin

Risø DTU National Laboratory for Sustainable Energy

Measuring the elastic strain of individual grains in a polycrystalline material

• Why?

- To study grain-grain interactions in deformed materials Does the strain depend on the grain orientation and/or the neighbouring grains?
- To study residual stresses
- To study crack formation and propagation and the role of reinforcements for the process
- How?
 - Farfield 3DXRD
- July 2008 workshop on 3DXRD software for strain in grains:
 - C. Aydiner, J. Bernier, J. Wright, U. Lienert, P. Reischig (W. Ludwig)
 - M. Miller, A. Borbely
- FitAllB Fable package for fitting grain resolved centre of mass positions, orientations and elastic strains

FitAllB

$$\sum_{i,j(i)} \left(\prod_{i}^{1} \overline{G}_{ij} - \frac{\lambda}{2\pi} U_{i} B_{i} \overline{G}_{hkl,ij} \right)^{T} V_{ij}^{-1} \left(\prod_{ij}^{1} \overline{G}_{ij} - \frac{\lambda}{2\pi} U B_{j} \overline{G}_{hkl,ij} \right)$$
$$\overline{G}_{ij} = \left[\frac{\overline{d}_{ij}}{|\overline{d}_{ij}|} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right]$$
$$\overline{d}_{ij} = \Re \left(\begin{array}{c} 0 \\ 0 \\ \sqrt{det} i \\ \sqrt{det} i$$

Observations 3 per reflection

Global parameters 10

Grain parameters 12 per grain

Fable input

- peaksearch:
 - $\bullet \text{ images} \rightarrow$
 - filtered peaks file (.flt: ω, dety, detz, spotid, intensity)

• transformation:

- peak positions (.flt) + detector parameters (.par) \rightarrow
- scattering g-vectors (.gve)
- GrainSpotter:
 - g-vectors \rightarrow
 - oriented grains (.log: spotid, h, k, l, orientations, positions)

FitAllB input

- flt_file al20_peaks_t25.flt
- par_file al20_detector.par
- log_file al20_grainspotter.log
- structure_file al.cif
- dety_size 2048
- detz_size 2048
- w_step 0.5
- w_limit -22.5 22.5 67.5 112.5
- crystal_system cubic
- c11 10.8e10
- c12 6.22e10
- c44 2.84e10
- skip 4 # skip grain 4 in al20_grainspotter.log
- ia 0.2
- min_refl 60

FitAllB input

- center 0 # Fit beam centre on detector in y direction, cy

- L 0 # Fit sample-to-detector distance
- rod 1 # Fit orientations (Rodrigues vector)

FitAllB output

- A parameter file containing the following parameters for each grain:
 - grainno mean_IA grainvolume x y z
 - rodx rody rodz U11 U12 U13 U21 U22 U23 U31 U32 U33
 - eps11 eps22 eps33 eps23 eps13 eps12
 - eps11_s eps22_s eps33_s eps23_s eps13_s eps12_s
 - sig11 sig22 sig33 sig23 sig13 sig12
 - sig11_s sig22_s sig33_s sig23_s sig13_s sig12_s
- An error file containing the estimated errors of the above parameters

Tests on simulated data - PolyXSim

Model systems

- F.C.C. or B.C.C. metals
- 100-200 illuminated grains
- Positions randomly distributed in cylinder with $\emptyset = 0.5-1$ mm and h=0.01-0.1 mm
- Random orientations
- Lognormal distribution of grain sizes
- Random strain, Gaussian distribution with $\mu=0$ and $\sigma=0.001$
- \sim 70 keV, 2048 \times 2048 pixels detector, 50 \times 50 µm pixels (ID11 Frelon4M) sample-to-detector distance to give 5 full diffraction rings
- Present example

 - 100 grains of IF steel (B.C.C)
 ω-ranges: -22.5 → 22.5° and 67.5 → 112.5° in steps of 0.5°

Simulated data and error estimation Idealised geometry Detector discretisation

For each of the 12 grain parameters:

x-axis: (refined – true value)/ estimated error

y-axis: Number of observations

Red curve: Gaussian with $\mu=0$ and $\sigma=1$, expected for correct error estimation

Idealised geometry Diffractometer vibrations in y and z (2D-Gaussian, $\sigma=1 \mu m$)

For comparison:

Fitting global parameters

- Fitglobalgrain or Fitgloball for multigrain global parameter refinements
- Same input file as for FitAllB, but with the following options:
- w 1 # Fit omega stage tilt parameter wy (wedge)
- center 1 # Fit beam centre on detector in y direction, cy
- tilt 1 # Fit detector tilt parameters tx, ty, tx
- L 1 # Fit sample-to-detector distance
- rod 1 # Fit orientations (Rodrigues vector)

Sample tilt (wedge) off by 0.001°

12 **Risø DTU, Technical University of Denmark**

Beam centre on detector off by 0.01 pixels in y direction (0.5 μm)

For comparison:

Detector tilt off by 0.006°

For comparison:

Sample-to-detector distance off by 2 µm on 200 mm (1e-5)

For comparison:

Fitted geometry Detector discretisation Diffractometer vibrations

For comparison:

1.27 microns 0.008 deg 2.52e-5

With vibrations:

1.33 microns 0.008 deg 4.17e-5

Experimental data Refining global parameters

- Global parameters for Al reference single crystal
 - wedge = -0.0206°
 - $y_center = 1019.06$
 - tilt x = -0.00041
 - tilt y = 0.00303
 - tilt_z = -0.01337
 - L = 252.355 mm
 - Possible to index ~35% of the reflections

- wedge = $-0.3552(7)^{\circ}$ • $y_center = 1018.743(11)$

• Global parameters for 5

161 grains

layers of undeformed Cu,

- tilt_x = -0.00066(1)
- tilt_y = 0.00414(10)
- tilt z = -0.01063(10)
- L = 252.358(4) mm
- Possible to index ~45% of the reflections

Experimental data, level 1: Centre of mass position and orientations IF steel, ex situ deformed

NB! Position fit using near-field data

G. Winther, H.F. Poulsen, L. Margulies, M. Kobyashi, J. Oddershede, S. Schmidt, J. Wright – in progress

18 **Risø DTU, Technical University of Denmark**

Experimental data, level 1: Centre of mass positions and orientations IF steel, ex situ deformed

Possible to match 1186 grains (of 1939 and 1766)

To study grain rotations during deformation

Experimental data, level 2: Positions, orientations and strains Cu, deformed tensionally in situ

- Strain levels: undeformed, 1%, 3% and unloaded
- Sample diameter 1 mm, 5 layers of 0.1 mm mapped
- 800 large grains indexed and refined
- 450 of these match between undeformed and 3% deformation

J. Oddershede, G. Winther, H.F. Poulsen, L. Margulies, M. Moscicki, S. Schmidt, J. Wright – in progress

21 **Risø DTU, Technical University of Denmark**

Jette Oddershede TotalCryst workshop 2-apr-2009

DTU

Experimental data, level 3: Laguerre tesselation, grain maps and grain interaction studies

- Laguerre tesselation:
 - Method to get 3D grain map from centre of mass positions and relative grain volumes
- Test on position, volumes and grain shapes from from microtomography on meta-stable beta-titanium alloy

(A.	Lvckegaard.	E.M.	Lauridsen.	W.	Ludwia.	R.W.	Fonda.	H.F. Poulser	n)
(/	Lyciceguuru,	L	Luunusen,		Luumg,	1	r onau,		

	Voronoi	Laguerre						
Error type	None	None	Volume	CMS				
Std. of error, 3 sigma		-	10%	2 µm	4 µm	7 µm	10 µm	
% Correct labelled voxels	59.72	86.30	86.26	85.88	84.72	81.85	78.25	
% grains with all neighbours correct	7.82	31.75	30.90	28.80	23.82	16.99	10.15	
# erroneously extra neighbours/grain	1.87	0.58	0.59	0.62	0.73	0.93	1.23	
# erroneously missing neighbours/grain	1.29	0.64	0.65	0.69	0.76	0.96	1.24	
# total of wrong neighbours/grain	3.16	1.22	1.24	1.31	1.49	1.89	2.47	

Table 1: Average similarity measures for the tessellations: Voronoi (N=1), Laguerre without errors (N=1), Laguerre with 10% volume errors (N=17) and Laguerre with 2 μm, 4 μm, 7 μm and 10 μm CMS errors (N=17).

Experimental data, level 3: Cu, deformed tensionally in situ

2-apr-2009

Experimental data, level 3 Cu, deformed tensionally in situ

Conclusions

- FitAllB for refining centre of mass grain positions, orientations and strain tensors and Fitglobalgrain/Fitgloball for refining global experimental parameters
- Simulated data used to validate error estimation and illustrate the necessity for accurate global parameters
- IF steel ex situ
 - ~2000 grains, good statistics
 - The use of near-field data for position fit significantly improved these
- Cu in situ
 - Average estimated error on ϵ_{33} strain in tensile direction \leq 1.2e-4
 - Strain evolution along tensile axis detected
 - Orientation dependence of ϵ_{33} detected

Outlook

- IF steel ex situ:
 - Too low percentage of grains matched between undeformed and 3% deformed, must be improved
 - 6% and 9% data
- Cu in situ:
 - Twins, indexing
 - Strain and correction for spatial distortion of detector

 - Analysis of data measured at 0.2 % and 0.4 % deformation Present data measured for ω -ranges: -150 \rightarrow -30° and 30 \rightarrow 150° in steps of 0.25°. Is one ω -range enough (speed gain)?
 - One layer remeasured in steps of 0.1° , is this an improvement?
- APS beamtime application for studying the grain resolved stress evolution around crack tips.

Acknowledgements

- J. Wright & H.O. Sørensen, my python and fable gurus
- G. Winther, everything on deformation theory
- Everyone who helped prepare the samples and collect the data
- M. Moscicki and A. Borbely, MPIE Düsseldorf, stress rig

Motivation

- Goal:
 - To determine the centre-of-mass elastic strains (and stresses type II) in many (100+) grains to an accuracy of 10⁻⁴
- To study what:
 - grain-grain interactions in elastically deformed materials
 - crack formation and propagation
 - residual stresses
- Approach
 - FitAllB Fable package for fitting grain resolved centre of mass positions, orientations and elastic strains

Potential problems 2: Peak overlap

- Especially for textured and/or deformed materials
- Solutions:

 - Illuminate a smaller volume estimated error
 Filter out peaks covering more than a certain number of pixels
 Use several thresholds in peaksearch and merge the outcome